• Title/Summary/Keyword: design chart

Search Result 557, Processing Time 0.023 seconds

Design of Median Control Chart for Nonnormally Distributed Processes (비정규분포공정(非正規分布工程)에서 메디안특수관리도(特殊管理圖)의 모형설계(模型設計))

  • Sin, Yong-Baek
    • Journal of Korean Society for Quality Management
    • /
    • v.15 no.2
    • /
    • pp.10-19
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\overline{X}$-chart, X-chart, $\widetilde{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In the Shewhart $\overline{X}$-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions.

  • PDF

A Study of Reinforced Design Chart for Soil Nailing Slopes (Soil Nailing 공법을 적용하기 위한 사면보강 설계도표에 관한 연구)

  • Seo, Jin-Won;Kim, Hak-Moon;Jang, Kyung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1009-1019
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, in order to determine the economical length ratio and nail angle, complicated analytical need to be applied by means of computer programs. Therefor this suggested Soil stability Chart for nailed slopes which may be very useful for pre-design, rapidly design, and final check. Three slope types, three nail length and three nail angles are selected for the stability analysis by using limit equilibrium method of Bishop and French Method. From the above results, this study propose the slope reinforced design charts for dry season and rainy season. This proposed reinforced design charts can check dry season as well as rainy season, also these charts can provide reinforcing requirement, soil nail's economical length ratio and nail angle as well.

  • PDF

Design of the Robust CV Control Chart using Location Parameter (위치모수를 이용한 로버스트 CV 관리도의 설계)

  • Chun, Dong-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.116-122
    • /
    • 2016
  • Recently, the production cycle in manufacturing process has been getting shorter and different types of product have been produced in the same process line. In this case, the control chart using coefficient of variation would be applicable to the process. The theory that random variables are located in the three times distance of the deviation from mean value is applicable to the control chart that monitor the process in the manufacturing line, when the data of process are changed by the type of normal distribution. It is possible to apply to the control chart of coefficient of variation too. ${\bar{x}}$, s estimates that taken in the coefficient of variation have just used all of the data, but the upper control limit, center line and lower control limit have been settled by the effect of abnormal values, so this control chart could be in trouble of detection ability of the assignable value. The purpose of this study was to present the robust control chart than coefficient of variation control chart in the normal process. To perform this research, the location parameter, ${\bar{x_{\alpha}}}$, $s_{\alpha}$ were used. The robust control chart was named Tim-CV control chart. The result of simulation were summarized as follows; First, P values, the probability to get away from control limit, in Trim-CV control chart were larger than CV control chart in the normal process. Second, ARL values, average run length, in Trim-CV control chart were smaller than CV control chart in the normal process. Particularly, the difference of performance of two control charts was so sure when the change of the process was getting to bigger. Therefore, the Trim-CV control chart proposed in this paper would be more efficient tool than CV control chart in small quantity batch production.

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.

Design chart of sound insulation for multiple panels (다중판넬의 차음설계차트)

  • Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.946-949
    • /
    • 2006
  • This study is a trial to make a design chart of sound insulation for multiple panel. Dilatational frequency, ${\Large f}_d$ becomes a key factor for optimal design since it acts like a turning point in sound insulation performance of such panels. Hence, in tuning the ${\Large f}_d$ optimally, elastic modulus of core material and thickness of the skin panel is designated to parameters. Based on these parameter, a design chart of sound insulation for multiple panel is made. Its applicability is proved by the case study of High noise reduction panel.

  • PDF

A Study on the Design of Adaptive EWMA Control Chart using Kalman Gain Recursive Average (칼만 게인 궤환 평균을 이용한 적응 EWMA 관리도 설계)

  • Yoon, Sangwon;Yoon, Seokhwan;Shin, Yongback
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • Adaptive EWMA(Exponentially Weighted Moving Average)-x control chart using the Kalman gain recursive average is designed. The designed control chart is effective to on-line process monitoring as continuous flow processes. Performance evaluation between the designed control chart and traditional one is implemented. For this, ARL(Average Run Length) is adopted as a criterion. Results show that the designed adaptive EWMA-x control chart has shorter ARL than EWMA-x control chart when process mean is shifted. This model can be extended to process prevention control. The methodology proposed in this research is turned out to show the high performance than that of the given methodologies.

  • PDF

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

Design of Modified ${\bar{x}}$-s Control Chart based on Robust Estimation (로버스트 추정에 근거한 수정된 ${\bar{x}}$-s 관리도의 설계)

  • Chung, Young-Bae;Kim, Yon-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Control charts are generally used for process control, but the role of traditional control charts have been limited in case of a non-contaminated process. Traditional ${\bar{x}}$-s control chart has not been activated well for such a problem because of trying to control processes as center line and control limits changed by the contaminated value. This paper suggests modified ${\bar{x}}$-s control chart based on robust estimation. In this paper, we consider the trimmed mean of the sample means and the trimmed mean of the sample standard deviations. By comparing with ARL value, the responding results are decided. The comparison resultant results of traditional control chart and modified control chart are contrasted.

Robust Control Chart using Bootstrap Method (붓스트랩 방법을 이용한 로버스트 관리도)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.39-49
    • /
    • 2003
  • Statistical process cintrol is intended to assist operators of a stable system in monitoring whether a change has occurred in the process, and it uses several control charts as main tools. In design and use of control chart, it is rational that probability of false alarm is minimized in stable process and probability of detecting shifts is maximized in out-of-control. In this study, we establish bootstrap control limits for robust M-estimator chart by applying the bootstrap method, called resampling, which could not demand assumptions about pre-distribution when the process is skewed and/or the normality assumption is doubt. The results obtained in this study are summarized as follows : bootstrap M-estimator control chart is developed for applying bootstrap method to M-estimator chart, which is more robust to keep ARL when process contain contaminate quality characteristic.

Design of Robust Expected Loss Control Chart (로버스트 기대손실 관리도의 설계)

  • Lee, Hyeung-Jun;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • Control Chart is a graph which dots the characteristic values of a process. It is the tool of statistical technique to keep a process in controlled condition. It is also used for investigating the state of a process. Therefore many companies have used Control Chart as the tool of statistical process control (SPC). Products from a production process represent accidental dispersion values around a certain reference value. Fluctuations cause of quality dispersion is classified as a chance cause and a assignable cause. Chance cause refers unmanageable practical cause such as operator proficiency differences, differences in work environment, etc. Assignable cause refers manageable cause which is possible to take actions to remove such as operator inattention, error of production equipment, etc. Traditionally ${\bar{x}}-R$ control chart or ${\bar{x}}-s$ control chart is used to find and remove the error cause. Traditional control chart is to determine whether the measured data are in control or not, and lets us to take action. On the other hand, RNELCC (Reflected Normal Expected Loss Control Chart) is a control chart which, even in controlled state, indicates the information of economic loss if a product is in inconsistent state with process target value. However, contaminated process can cause control line sensitive and cause problems with the detection capabilities of chart. Many studies on robust estimation using trimmed parameters have been conducted. We suggest robust RNELCC which used the idea of trimmed parameters with RNEL control chart. And we demonstrate effectiveness of new control chart by comparing with ARL value among traditional control chart, RNELCC and robust RNELCC.