• Title/Summary/Keyword: dermal fibroblasts cell

Search Result 133, Processing Time 0.09 seconds

Astaxanthin Inhibits Autophagic Cell Death Induced by Environmental Hormones in Human Dermal Fibroblasts

  • Lim, Seong-Ryeong;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.218-218
    • /
    • 2020
  • Astaxanthin, a natural antioxidant carotenoid, has been thought to provide health benefits by decreasing the risk of oxidative stress?related diseases. In the present study, we investigated the effect of an astaxanthin during the autophagic cell death induced by bisphenol A (BPA) which is known major environmental pollutants. We found that astaxanthin significantly blocked the autophagic cell death via inhibition of intracellular Reactive Oxygen Species (ROS) in normal human dermal fibroblasts. Astaxanthin significantly inhibited the phosphorylation mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) responsible for the expression of LC3-II and Beclin-1 in BPA-treated normal human dermal fibroblasts. We suggest that astaxanthin blocks autophagic cell death induced by BPA via the inhibition of ROS-mediated signaling events in human dermal fibroblasts.

  • PDF

Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

  • Baek, Beomyeol;Lee, Su Hee;Kim, Kyunghoon;Lim, Hye-Won;Lim, Chang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.269-277
    • /
    • 2016
  • Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties.

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts - Asafoetida reverses senescence in fibroblasts -

  • Moghadam, Farshad Homayouni;Mesbah-Ardakani, Mehrnaz;Nasr-Esfahani, Mohammad Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Objectives: Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods: Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to $H_2O_2$, and the incidence of senescence was recognized by using cytochemical staining for the activity of ${\beta}$-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results: Our experiments show that asafetida in concentrations ranging from $5{\times}10^{-8}$ to $10^{-7}g/mL$ has revitalizing effects on senescent fibroblasts and significantly reduces the ${\beta}$-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than $5{\times}10^{-7}g/mL$, asafetida is toxic for cells and induces cell death. Conclusion: The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.

Anti-aging Effect of Cycloheterophyllin in UVA-irradiated Dermal Fibroblasts (자외선 조사에 의해 노화된 섬유아세포에서 Cycloheterophyllin의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.285-290
    • /
    • 2019
  • This study was carried out to identify the skin anti-aging effect of cycloheterophyllin on dermal fibroblasts. To elucidate anti-aging effects of cycloheterophyllin on dermal fibroblasts, I measured cell viability, mRNA expressions, and Collagen, type I/matrix metallopeptidase 1(MMP1)-ELISA assay. In this study, I investigated the effects of cycloheterophyllin on Collagen, type I, alpha 1(COL1A1)/Collagen, type III, alpha 1(COL3A1)/MMP1/Superoxide dismutases/Catalase(CAT) mRNA expressions and Collagen, type I/MMP1 protein production. Quantitative Real-time RT-PCR showed that cycloheterophyllin increased mRNA level of COL1A1/COL3A1/CAT genes and collagen, type I protein by ELISA assay compared to UVA-treated dermal fibroblasts. Furthermore MMP1 mRNA and protein expressions were decreased by cycloheterophyllin treatment. These observations revealed that cycloheterophyllin increased anti-aging effects in dermal fibroblasts. Therefore, I identified the anti-aging effects of cycloheterophyllin, and these results showed that the cycloheterophyllin can be a considerable potent ingredient for skin anti-aging. Based on this, I anticipated further researches about cycloheterophyllin for mechanism to develop not only cosmetics but for healthcare food or medicine.

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • Kim, Chang-Hwan;Kim, Cheon-Ho;Park, Hyeon-Suk;Gang, Hyeon-Ju;Han, Eun-Suk;Kim, Yun-Yeong;Choe, Yeong-Ju;Lee, Su-Hyeon;Choe, Tae-Bu;Son, Yeong-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • Chitosan scaffold is widely applied to drug delivery and tissue engineering. We have developed chitosan scaffolds, with various pore size, by differing freezing temperature and duration of ultraviolet (UV) irradiation, for reconstructing skin equivalent. Chitosan scaffold was coated with type I collagen, fibronectin and basic fibroblast growth factor (bFGF) in various combinations and concentrations, to evaluate the effect of extracellular matrix (ECM) and bFGF on cell adhesion, growth and differentiation of dermal fibroblasts. Human dermal fibroblasts, isolated from newborn foreskin and passaged between 3 and 5, were seeded on the top of scaffolds and cultivated for 2 weeks. We examined the morphology and the secretion of ECM of fibroblasts using scanning electron microsopy (SEM) and histochemistry. A stellate morphology of fibroblasts were seen in all groups. The scaffold coated with either type I collagen and bFGF or type I collagen and fibronectin, however, showed the best condtion of dermal fibroblasts, in that the highest cell number and ECM secretion were seen. On the contrary, scaffolds coated with all three factors, type I collagen, bFGF and fibronectin, showed lower number of cells and ECM secretion than scaffolds with two factors. There was a tendency of dose-dependence in all three factors for fibroblast growth and ECM secretion. In conclusion, we may suggest that chitosan scaffold coated with either type I collagen/bFGF or type I collagen/fibronectin could provide more favorable environment for the growth and differentiation of dermal fibroblasts.

  • PDF

Effect of Oncostatin M on Wound Healing Activity of Diabetic Fibroblasts in vitro (Oncostatin M이 당뇨 환자 섬유모세포의 창상치유능에 미치는 영향)

  • Lim, Hyung Woo;Chun, Kyung Wook;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.355-359
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) has been known as a role in fibrosis and anti-inflammatory effects of various organs and tissues. Although there have been a number of studies which are focused on the roles and mechanisms of OSM, there are few reports on its effects in chronic wound healing. The purpose of this study is to evaluate the effects of OSM in wound healing activities of dermal fibroblasts of chronic wound in vitro. In particular, this study is focused on cell proliferation and synthesis of collagen and glycosaminoglycan(GAG), which are the major components of the extracellular matrices, of diabetic fibroblasts. Methods: Fibroblasts were isolated from excess skin that was obtained from diabetic foot ulcer patients who underwent debridement. The isolated fibroblasts were cultivated in presence of OSM(100 ng/mL). Cell proliferation, collagen synthesis and GAG levels were compared. Results: All the components tested in this study increased in OSM treatment group. In particular, collagen and GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). Conclusion: These results indicate that OSM increases wound healing activities of dermal fibroblasts of chronic wound in vitro.

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.