• Title/Summary/Keyword: deposition constant

Search Result 566, Processing Time 0.027 seconds

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • 안인순;천민우;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.

A Study on the Abnormal Oxidation of Stacked Capacitor due to Underlayer Dependent Nitride Deposition (질화막 성장의 하지의존성에 따른 적층캐패시터의 이상산화에 관한 연구)

  • 정양희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • The composite SiO$_2$/Si$_3$N$_4$/SiO$_2$(ONO) film formed by oxidation on nitride film has been widely studied as DRAM stacked capacitor multi-dielectric films. Load lock(L/L) LPCVD system by HF cleaning is used to improve electrical capacitance and to scale down of effective thickness for memory device, but is brings a new problem. Nitride film deposited using HF cleaning shows selective deposition on poly silicon and oxide regions of capacitor. This problem is avoidable by carpeting chemical oxide using $H_2O$$_2$cleaning before nitride deposition. In this paper, we study the limit of nitride thickness for abnormal oxidation and the initial deposition time for nitride deposition dependent on underlayer materials. We proposed an advanced fabrication process for stacked capacitor in order to avoid selective deposition problem and show the usefulness of nitride deposition using L/L LPCVD system by $H_2O$$_2$cleaning. The natural oxide thickness on polysilicon monitor after HF and $H_2O$$_2$cleaning are measured 3~4$\AA$, respectively. Two substrate materials have the different initial nitride deposition times. The initial deposition time for polysilicon is nearly zero, but initial deposition time for oxide is about 60seconds. However the deposition rate is constant after initial deposition time. The limit of nitride thickness for abnormal oxidation under the HF and $H_2O$$_2$cleaning method are 60$\AA$, 48$\AA$, respectively. The results obtained in this study are useful for developing ultra thin nitride fabrication of ONO scaling and for avoiding abnormal oxidation in stacked capacitor application.

  • PDF

The Effects of Deposition Temperature on the Growth Behavior of the $BNdT(Bi_{3.25}Nd_{0.75}Ti_{3}O_{12})$ Ferroelectric Thin Films ($BNdT(Bi_{3.25}Nd_{0.75}Ti_{3}O_{12})$ 강유전 박막 성장거동에 미치는 증착온도의 영향)

  • Kwon, Hyun-Yul;Nam, Sung-Pill;Kim, Jung-Hun;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.176-178
    • /
    • 2005
  • Ferroelectric $Bi_{3.25}Nd_{0.75}Ti_{3}O_{12}(BNdT)$ thin films were proposed for capacitor of FeRAM. The BNdT thin films were grown on Pt/Ti $SiO_2/P-Si(100)$ substrates by the RF magnetron sputtering deposition. The dielectric properties of the BNdT were investigated by varying deposition temperatures. Increasing deposition temperature, the (117) peak was increased. An increase of columnar and recrystalline structure of BNdT films with increasing deposition temperature was observed by the Field Emission Scanning Electron Microscopy(FE-SEM). The dielectric constant and dielectric loss of the BNdT thin films with deposition temperature of $600^{\circ}C$ were 319 and 0.05, respectively.

  • PDF

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

Electrical properties of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 전기적 특성)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thickness of $10{\sim}20{\mu}m$ were fabricated on silicon substrate by aerosol deposition method. As-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$. The electrical properties of films deposited by PZT powders were characterized using impedance analyzer and Sawyer-Tower circuit. The PZT powder was prepared by both conventional solid reaction process and sol-gel process. The remanent polarization, coercive field, and dielectric constant of the $10{\mu}m$ thick film with solid reaction process were $20{\mu}C/cm^2$, 30 kV/cm and 1320, respectively. On the other hand, the PZT films by sol-gel process showed a poor dielectric constant of 635. The reason was probably due to the presence of pores produced from organic residue during annealing.

Fabrication and Characterization of Bi2O3-MgO-ZnO-Nb2O5 Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 Bi2O3-MgO-ZnO-Nb2O5 박막의 제작 및 특성 분석)

  • Bae, Ki-Ryeol;Lee, Dong-Wook;Elanchezhiyan, J.;Lee, Won-Jae;Bae, Yun-Mi;Shin, Byoung-Chul;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2010
  • Pulsed laser deposition is a very efficient technique for fabricating thin films of complex compounds. In the present work, $Bi_2O_3$-MgO-ZnO-$Nb_2O_5$ (BMZN) pyrochlore thin films were deposited on platinized Si substrates at various temperatures by using pulsed laser deposition technique. These films have been characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM) to investigate their structural, morphological properties. MIM structure was manufactured to analyze di-electrical properties of BMZN thin films. XRD results reveal the thin films deposited at less than $400^{\circ}C$ show only amorphous phase, the crystallized thin films was observed when the thin films were prepared temperature at above $500^{\circ}C$. From AFM, it was known that the thin film grown at $400^{\circ}C$ is the densest. Dielectric constant increased with increasing temperature up to $400^{\circ}C$ at 100 kHz and dramatically decreased at the higher temperature. A aspect of dissipation factor was the exact opposite of dielectric constant. BMZN thin films grown at $400^{\circ}C$ exhibited a high dielectric constant of 60.9, a low dissipation factor of 0.007 at 100 kHz.

Study on the Formation of SiOC Films and the Appropriate Annealing Temperature

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.217-219
    • /
    • 2011
  • As silicon devices shrink and their density increases, the low dielectric constant materials instead of $SiO_2$ film is required. SiOC film as low-k films was deposited by the capacitively coupled plasma chemical vapor deposition and then annealed at $300{\sim}500^{\circ}C$ to find out the properties of the dependence on the temperature and polarity. This study researched the dielectric constant using by the structure of the metal/SiOC film/p-Si, chemical shift, thickness, refractive index and hardness. The trend of reflective index was inverse proportioned the thickness, but the dielectric constant was proportioned it. The dielectric constant decreased with decreasing the thickness and the increment of the refractive index.