• Title/Summary/Keyword: densification, and grain growth

Search Result 173, Processing Time 0.023 seconds

Grain growth behavior of porous Al2O3 with addition of La2O3 prepared via freeze-casting (동결주조로 성형한 La2O3가 첨가된 Al2O3 다공체의 소결 중 입자성장 거동)

  • Kim, Sung-Hyun;Woo, Jong-Won;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.231-238
    • /
    • 2022
  • To secure the mechanical strength of porous Al2O3 ceramics, which can be utilized for filters and catalyst supports is essential for their functionality and durability. Superior mechanical strength would be obtained by tailoring the densification and grain growth during sintering. This study deals with grain growth behavior of a freeze-casted Al2O3 with addition of La2O3. In a temperature range between 1400 and 1600℃, variations of average grain size with sintering time and temperature were observed and analyzed with Gtn-G0n = kt and with k = k0exp(-Ea/RT). As a result, n value and activation energy (Ea) for grain growth were calculated as 3 and 489.09 kJ/mol, respectively. These commonly confirms retardation effect of the La addition during sintering of Al2O3 porous structure. More accurate analysis on the La effect can be followed to provide useful guidance for the selection of additives for better mechanical strength in Al2O3 porous structures.

Sintering Behavior of $TiB_2$-SiC Composites ($TiB_2$-SiC 복합재료의 소결거동)

  • 윤재돈
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • The effect of SiC addition on sintering behaviors and microstructures of TiB2 ceramics were studied. The sintering of TiB2 was limited due to the surface diffusion and rapid grain growth at high temperature. However the addition of SiC to TiB2 ceramics improved the densification to above 99% of the theoretical density. The sintering of TiB2-SiC composite starts at 120$0^{\circ}C$ with the melting of the oxides in particle surface as impurities. After the reduction of the oxide by additional cabon at above 140$0^{\circ}C$, the grain boundary diffusion through the interface of TiB2-SiC play an important role. TEM observation showed neither chemical reactions nor other phases formed at the TiB2-SiC interfaces but the microcracks were observed due to the mismatch of thermal expansion between TiB2-SiC.

  • PDF

Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder (셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구)

  • Song, Bong-Geun;Hwang, Yoonjung;Park, Bo-In;Lee, Seung Yong;Lee, Jae-Seung;Park, Jong-Ku;Lee, Doh-Kwon;Cho, So-Hye
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

Growth Behavior of Nanocrystalline CrN Coatings by Inductively Coupled Plasma (ICP) Assisted Magnetron Sputtering (유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 증착된 나노결정질 CrN 코팅막의 성장)

  • Seo, Dae-Han;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.556-560
    • /
    • 2012
  • Nanocrystalline CrN coatings were deposited by DC and ICP-assisted magnetron sputtering on Si (100) substrates. The influences of the ICP power on the microstructural and crystallographic properties of the coatings were investigated. For the generation of the ICP, radio frequency was applied using a dielectric-encapsulated coil antenna installed inside the deposition chamber. As the ICP power increased from 0 to 500W, the crystalline grain size decreased. It is believed that the decrease in the crystal grain size at higher ICP powers is due to resputtering of the coatings as a result of ion bombardment as well as film densification. The preferential orientation of CrN coatings changed from (111) to (200) with an increase in the ICP power. The ICP magnetron sputtering CrN coatings showed excellent surface roughness compared to the DC magnetron sputtering coatings.

Microstructural Development of $Si_3N_4$ Ceramics Containing Aligned ${\beta}-Si_3N_4$ Whisker Seeds (배향된 질화규소 휘스커 종자를 함유한 질화규소 세라믹스의 미세구조에 관한 연구)

  • Bae, Byoung-Chan;Park, Dong-Soo;Seo, Won-Chan;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.32-38
    • /
    • 2009
  • Silicon nitride samples with aligned whisker seeds were prepared with different amounts of yttria and alumina as the sintering additives. Their sintering behaviors and the microstructural developments between $1850^{\circ}C$ and $2050^{\circ}C$ were examined. The sample with larger amount of the sintering additives showed faster densification and grain growth. Even though addition of the aligned whisker seeds slightly retarded densification of silicon nitride, it improved the flexural strength and the fracture toughness. Both the flexural strength and the fracture toughness of silicon nitride with the aligned whisker seeds were increased as the amount of the sintering additives was increased.

Improved Densification and Microwave Dielectric Properties of BaO·Nd2O3·5TiO2 Modified with an Iso-Component Borate Glass

  • Shin, Dong-Joo;Lee, Hyung-Sub;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • [ $BaO{\cdot}Nd_2O_3{\cdot}5TiO_2$ ] (BNT) ceramics modified with a borate glass containing Ba, Nd and Ti as glass constituents were investigated with regard to their sintering behavior and microwave dielectric properties. An addition of iso-component glass significantly improved the sinterabilty of the BNT ceramics and lowered the sintering temperature. A maximum density of $5.29\;g/cm^3$ and an x-y shrinkage of 17% were obtained for BNT ceramics containing 10wt.% of the glass sintered at $1100^{\circ}C$. The dielectric composition without the glass additive was only slightly densified at $1100^{\circ}C$. The resulting sample exhibited two crystalline phases, $BaNd_2Ti_5O_{14}$ and $Ba_2Ti_9O_{20}$, regardless of sintering temperature and glass content. When >10wt.% glass was added, exaggerated grain growth with a less uniform microstructure was found, resulting in the subsequent reduction of the fired density and the dielectric properties. BNT ceramics containing 10wt.% of the isocomponent glass sintered at $1100^{\circ}C$ for 4 h showed promising dielectric properties of k = 71.3 and Q = 1,330.

Effects of Excess PbO and Ball-Milling on the Microstructure, Sintering Behavior and Mechanical Properties of PZT Ceramics (과잉 PbO 첨가 및 미분쇄에 의한 PZT 압전세라믹스의 미세구조제어와 소결특성 및 기계적 성질)

  • 전봉관;남효덕;김상태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.726-734
    • /
    • 1995
  • Pb(Zr0.53Ti0.47)O3 (PZT) ceramics having different microstructures were fabricated at low temperatures using calcined PZT powders with addition of excess PbO powder and/or ball milling. The effects of excess PbO and ball milling time on the microstructure, the sintering characteristic, and the mechanical properties of these ceramics were studied. Fine powders with average particle size of 0.38㎛ could be obtained by ball milling with 2.5 mm Ф zirconia balls for 120 hours. By the addition of 2mol% of excess PbO to these powders, it was possible to obtain well-densitified PZT ceramics at low sintering temperature of 980℃. Densification behavior of PZT was affected by the addition of excess PbO powder, while, grain growth was hardly affected by PbO addition. It was observed that Vicker's hardness decreased and fracture toughness increased with the increasing amount of PbO. At 1mol% excess PbO, it was shown that the minimum values of hardness and maximum fracture toughness were achieved. In addition, with increasing sintering time, the fracture toughness decreased and the hardness increased.

  • PDF

The Doping Effects of Intermediate Rare-earth Ions (Dy, Y and Ho) on BaTiO3 Ceramics (BaTiO3 세라믹 내 희토류(Dy, Y, Ho) 첨가 효과)

  • Park, Kum-Jin;Kim, Chang-Hoon;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • The electrical property and microstructure in $BaTiO_3$ ceramics doped rare-earth ions with intermediate ionic size ($Dy^{3+},Ho^{3+},Y^{3+}$) were investigated. Microstructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Incorporation of rare-earth ions to $BaTiO_3$ ceramics depended on their ionic radius sensitively. Compared to Ho and Y ions, Dy ions provide $BaTiO_3$ ceramics with the high rate of densification and well-developed shell formation, due to their high solubility in the $BaTiO_3$ lattice, but the microstructure of Dy doped $BaTiO_3$ ceramics is unstable at high temperature, because Dy ions could not play a role of grain growth inhibition, leading to diffuse into $BaTiO_3$ lattice continuously after completion of densification during sintering. Comparing electrical property and microstructure, it is shown that the reliability of capacitor improved by high shell ratio.

Effect of Difference in Mixing Methods of Zirconia on Mechanical Properties of ZTA (ZrO2의 혼합방법 차이가 ZTA의 기계적 물성에 미치는 영향)

  • Sohn, Jeongho
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.625-630
    • /
    • 2013
  • In this study, intermediate-mixed powders were prepared by loading zirconia powders initially in a ball-mill jar and loading alumina powders afterward; the initial-mixed powders were produced by loading zirconia and alumina powders together in the ball-mill jar. The effect of such differences in mixing method on the mechanical properties was investigated. In intermediate-mixed powders, the volume fraction of large particles slightly increased and, simultaneously, zirconia particles formed agglomerates that, due to early ball-mill loading of the zirconia powders only, were more dispersed than were the initial-mixed powders. For the intermediate-mixed powders, zirconia agglomerates were destroyed more quickly than were initial-mixed powders, so the number of dispersed zirconia particles rose and the inhibitory effect of densification due to the addition of a second phase was more obvious. In the microstructure of intermediate-mixed powders, zirconia grains were homogeneously dispersed and grain growth by coalescence was found to occur with increasing sintering temperature. For the initial-mixed powders, large zirconia grains formed by localized early-densification on the inside contacts of some zirconia agglomerates were observed in the early stages of sintering. The intermediate-mixed powders had slightly lower hardness values as a whole but higher fracture toughness compared to that of the initial-mixed powders.

Sintering of Alumina in the Presence of Oxynitride Additives (Oxynitride의 첨가에 의한 알루미나의 소결)

  • Bae, Won-Tae;Kim, Hae-Du
    • 연구논문집
    • /
    • s.30
    • /
    • pp.111-119
    • /
    • 2000
  • Sintering of alumina powder was studied in the presence of Y-Si oxide and oxynitride additives. The main crystalline phase of the sintering aids pre-reacted at $1400^{\circ}C$ was $\alpha$ - $Y_2$$SiO_2$>$O_7$. Y-N apatite was co-existed in the Si-40N sintering aid because of its high content of N. During the sintering process, liquid phases were formed by the reaction between additives and alumina, and these liquid phases promote the densification of alumina. SEM micrographs showed that uniform grain growth occurred in the system with oxide additive(Si-0N). In the case of oxynitride additive system(Si-20N and Si-40N), bimodal microstructure was observed due to the exaggerated grain growth, As the nitrogen content in the additive system increased the exaggerated grain growth occurred extensively. Bloating, which seemed to be originated by the liberation of $N_2$ gas, occurred un the Si-40N oxynitride additive system.