DOI QR코드

DOI QR Code

The Doping Effects of Intermediate Rare-earth Ions (Dy, Y and Ho) on BaTiO3 Ceramics

BaTiO3 세라믹 내 희토류(Dy, Y, Ho) 첨가 효과

  • Park, Kum-Jin (LCR Material Development Group, Samsung Electro-Mechanics) ;
  • Kim, Chang-Hoon (LCR Material Development Group, Samsung Electro-Mechanics) ;
  • Kim, Young-Tae (LCR Material Development Group, Samsung Electro-Mechanics) ;
  • Hur, Kang-Heon (LCR Development Team, Samsung Electro-Mechanics)
  • 박금진 (삼성전기 LCR 재료개발 그룹) ;
  • 김창훈 (삼성전기 LCR 재료개발 그룹) ;
  • 김영태 (삼성전기 LCR 재료개발 그룹) ;
  • 허강헌 (삼성전기 LCR 개발팀)
  • Published : 2009.03.31

Abstract

The electrical property and microstructure in $BaTiO_3$ ceramics doped rare-earth ions with intermediate ionic size ($Dy^{3+},Ho^{3+},Y^{3+}$) were investigated. Microstructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Incorporation of rare-earth ions to $BaTiO_3$ ceramics depended on their ionic radius sensitively. Compared to Ho and Y ions, Dy ions provide $BaTiO_3$ ceramics with the high rate of densification and well-developed shell formation, due to their high solubility in the $BaTiO_3$ lattice, but the microstructure of Dy doped $BaTiO_3$ ceramics is unstable at high temperature, because Dy ions could not play a role of grain growth inhibition, leading to diffuse into $BaTiO_3$ lattice continuously after completion of densification during sintering. Comparing electrical property and microstructure, it is shown that the reliability of capacitor improved by high shell ratio.

Keywords

References

  1. C. A.. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, and W. Huebner, “Structure Property Relationships in Coreshell $Batio_3$-lif Ceramics,” J. Mater. Res., 8 871-79 (1993). https://doi.org/10.1557/JMR.1993.0871
  2. S. H. Yoon, J. H. Lee, D. Y. Kim, and N. M. Hwang, “Coreshell Structure of Acceptor-rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., 85 3111-13 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00593.x
  3. Y. Fujikawa, Y. Umeda, and F. Yamane, “Analysis on the Sintering Process of X7R MLCC Materials,” J. Jpn. Soc. Powder Powder Metallurgy, 51 839-44 (2004). https://doi.org/10.2497/jjspm.51.839
  4. C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong, and K. H. Hur, “Role of Yttrium and Magnesium in the Formation of Core-shell Structure of $BaTiO_3$ Grains in MLCC,” J. Eur. Ceram. Soc., 28 1213-19 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.042
  5. Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, “Effects of Rare-earth Oxides on the Reliability of X7R Dielectrics,” Jpn. J. Appl. Phys., 41 5668-79 (2002). https://doi.org/10.1143/JJAP.41.5668
  6. H. Saito, Chazono, H. Kishi, and N. Yamaoka, “X7R Multilayer Ceramic Capacitors with Nickel Electrodes,” Jpn. J. Appl. Phys., 30 2307-10 (2001). https://doi.org/10.1143/JJAP.30.2307
  7. Y. Tsur, T. D. Dunbar, and C. A. Randall, “Crystal and Defect Chemistry of Rare-earth Cations in $BaTiO_3$,” J. Electroceram., 7 25-34 (2001). https://doi.org/10.1023/A:1012218826733
  8. G. V. Lewis and C. R. A. Catlow, “Computer Modeling of Barium Titanate,” Radiat. Effects, 73 307-14 (1983). https://doi.org/10.1080/00337578308220689
  9. G. V. Lewis, and C. R. A. Catlow “Deffect Studies of Doped and Undoped Barium Titanate Using Computer Simulation Techniques,” J. Phys. Chem. Sol., 47 89-97 (1986). https://doi.org/10.1016/0022-3697(86)90182-4
  10. Y. Tsur, A. Hitomi I. Scrymgeour, and C. A. Randall, “Site Occupancy of Rare-earth Cations in $BaTiO_3$,” Jpn. J. Appl. Phys., 40 255-58 (2001). https://doi.org/10.1143/JJAP.40.255
  11. H. Kishi, Y. Mizuno, and H. Chazono, “Base-metal Electrode-multilayer Ceramics Capacitors : Past, Present and Future Perspectives,” Jpn. J. Appl. Phys. 42 1-15 (2003). https://doi.org/10.1143/JJAP.42.1
  12. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, “The Effect of Rare-earth (La, Sm, Dy, Ho and Er) and Mg on the Microstructure in $BaTiO_3$,” J. Eur. Ceram. Soc., 19 1043-46 (1999). https://doi.org/10.1016/S0955-2219(98)00370-7
  13. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr., A32 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  14. S. H. Yoon, M. H. Hong, J. O. Hong, Y. T. Kim, and K. H. Hur, “Effect of Acceptor (Mg) Concentration on the Electrical Resistance at Room and High (200°C) Temperatures of Acceptor (Mg)-Doped $BaTiO_3$ Ceramics,” J. Appl. Phys., 102 054105 (2007). https://doi.org/10.1063/1.2777119
  15. K. Sasaki and J. Maier, “Low-temperature Defect Chemistry of Oxides. I. General Aspects and Numerical Calculations,” J. Appl. Phys., 86 5422-33 (1999). https://doi.org/10.1063/1.371541
  16. S. H. Yoon and H. Kim, “Effect of Donor (Nb) Concentration on the Bulk Electrical Resistivity of Nb-doped Barium Titanate,” J. Appl. Phys., 92 1039-47 (2002). https://doi.org/10.1063/1.1486049
  17. D. Makovec, Z. Samardzija, and M. Drofenik, “Solid Solubility of Holmium, Yttrium, Dysprosium in BaTiO3,” J. Am. Ceram. Soc., 87 1324-29 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07729.x
  18. B. D. Cullity, Elements of X-ray Diffraction, pp.281-92, Ed. by M. Cohen, Addison-Wesley, London, 1978.
  19. H. Y. Lu and M. H. Lin, “Charge Compensation Mechanism in Yttria-doped Barium Titanate,” Ceram. Int., 31 989-97 (2005). https://doi.org/10.1016/j.ceramint.2004.10.014
  20. K. Andrei, H. Tomoya, K. Hiroshi, and O. Hitoshi, “Effect of Ho/Mg Ratio on Formation Core-shell Structure in $BaTiO_3$ and on Dielectric Properties of BaTiO3 Ceramics,” Jpn, J. Appl. Phys., 41 6934-37 (2002). https://doi.org/10.1143/JJAP.41.6934
  21. M. Drofenik, “Oxygen Partial Pressure and Grain Growth in Donor-doped BaTiO3,” J. Am. Ceram. Soc., 70 311-14 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04999.x
  22. J. K. Lee and K. S. Hong, “Revisit to the Origin of Grain Growth Anomaly in Yttria-doped Barium Titanate,” J. Am. Ceram. Soc., 84 1745-49 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00909.x
  23. C.H. Kim, K.J. Park, Y.J.Yoon, D.S. Sinn, Y. T. Kim, and K.H. Hur, “Effects of Milling Condition on the Formation of Core-shell Structure in $BaTiO_3$ Grains,” J. Eur. Ceram. Soc., 28 [13] 2589-96 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.030
  24. Y. K. Vayunandana Reddy, D. Mergel, S. Reuter, V. Buck, and M. Sulkowski, “Structural and Optical Properties of $BaTiO_3$ Thin Films Prepared by Radio-frequency Magnetron Sputtering at Various Substrate Temperatures,” J. Phys. D: Appl. Phys., 39 1161-68 (2006). https://doi.org/10.1088/0022-3727/39/6/023
  25. J. K. Lee, K. S. Hong, and J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of $BaTiO_3$ Ceramics,” J. Am. Ceram. Soc., 84 2001-200 (2001).
  26. Y. S. Yoo, J. J. Kim, and D. Y. Kim, “Effects of Heating Rate on the Microstructural Evolution During Sintering of $BaTiO_3$ Ceramics,” J. Am. Ceram. Soc., 70 C322-24 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05647.x
  27. H. Chazono and H. Kishi “dc-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni internal Electrode : Impedance Analysis and Microstructure,” Jpn. J. Appl. Phys., 40 5624-29 (2001). https://doi.org/10.1143/JJAP.40.5624
  28. Y. Mizuno, T. Hagiwara, H. Chazono, and H. Kishi, “Effect of Milling Process on Core-shell Microstructure and Electrical Properties for BaTiO_3$-based Ni-MLCC,” J. Eur. Ceram. Soc., 21 1649-52 (2001). https://doi.org/10.1016/S0955-2219(01)00084-X