DOI QR코드

DOI QR Code

Improved Densification and Microwave Dielectric Properties of BaO·Nd2O3·5TiO2 Modified with an Iso-Component Borate Glass

  • Shin, Dong-Joo (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Hyung-Sub (Department of Materials Science and Engineering, Yonsei University) ;
  • Cho, Yong-Soo (Department of Materials Science and Engineering, Yonsei University)
  • Published : 2008.02.25

Abstract

[ $BaO{\cdot}Nd_2O_3{\cdot}5TiO_2$ ] (BNT) ceramics modified with a borate glass containing Ba, Nd and Ti as glass constituents were investigated with regard to their sintering behavior and microwave dielectric properties. An addition of iso-component glass significantly improved the sinterabilty of the BNT ceramics and lowered the sintering temperature. A maximum density of $5.29\;g/cm^3$ and an x-y shrinkage of 17% were obtained for BNT ceramics containing 10wt.% of the glass sintered at $1100^{\circ}C$. The dielectric composition without the glass additive was only slightly densified at $1100^{\circ}C$. The resulting sample exhibited two crystalline phases, $BaNd_2Ti_5O_{14}$ and $Ba_2Ti_9O_{20}$, regardless of sintering temperature and glass content. When >10wt.% glass was added, exaggerated grain growth with a less uniform microstructure was found, resulting in the subsequent reduction of the fired density and the dielectric properties. BNT ceramics containing 10wt.% of the isocomponent glass sintered at $1100^{\circ}C$ for 4 h showed promising dielectric properties of k = 71.3 and Q = 1,330.

Keywords

References

  1. M. Valant and D. Suvorov, Mater. Chem. Phys., 79, 104-10 (2003) https://doi.org/10.1016/S0254-0584(02)00248-1
  2. C. L. Lo, J. G. Duh, D. S. Chiou and W. H. Lee, J. Am. Ceram. Soc., 85, 2230-5 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00440.x
  3. Q. Zeng, W. Li, J. Shi, J. Guo, M. Zuo and W. Wu, J. Am. Ceram. Soc., 89, 1733-5 (2006) https://doi.org/10.1111/j.1551-2916.2006.00942.x
  4. X. M. Chen, Y. Suzuki and N. Sato, J. Mater. Sci.: Mater. Electron., 6, 10-6 (1995) https://doi.org/10.1007/BF00208127
  5. Y. S. Cho and K. H. Yoon, Handbook of Advanced Electronic and Photonic Materials and Devices; pp. 175-99, Academic Press, SanDiego, 2001
  6. E. A. Nenasheva and N. F. Kartenko, J. Eur. Ceram. Soc., 21, 2697-701 (2001) https://doi.org/10.1016/S0955-2219(01)00348-X
  7. A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, H. Alexandru, C. Berbecaru, D. Ghetu and G. Stoica, Mater. Sci. Eng. B, 109, 183-7 (2004) https://doi.org/10.1016/j.mseb.2003.10.116
  8. X. M. Chen, J. Mater. Sci. Lett., 14, 1041-2 (1995) https://doi.org/10.1007/BF00258158
  9. A. Yamada, Y. Utsumi and H. Watarai, Jpn. J. Appl. Phys., 30, 2350-3 (1991) https://doi.org/10.1143/JJAP.30.2350
  10. Y. D. Xia, G. H. Shi, D. Wu and Z. G. Liu, Thin solid Films, 472, 208-11 (2005) https://doi.org/10.1016/j.tsf.2004.07.055
  11. C. H. Lu and Y. H. Huang, Mater. Sci. Eng. B, 98, 33-7 (2003) https://doi.org/10.1016/S0921-5107(02)00593-7
  12. D. Kolar, S. Gaberscek, B. Volavsek, H. S. Parker and R. S. Roth, J. Solid State Chem., 38, 158-64 (1981) https://doi.org/10.1016/0022-4596(81)90030-X
  13. H. Kagata, T. Inoue, J. Kato and I. Kameyama, Jpn. J. Appl. Phys., 31, 3152-5 (1992) https://doi.org/10.1143/JJAP.31.3152
  14. W. C. Tzou, C. F. Yang, Y. C. Chen and P. S. Cheng, J. Eur. Ceram. Soc., 20, 991-6 (2000) https://doi.org/10.1016/S0955-2219(99)00228-9
  15. W. Hakki and P. D. Coleman, IRE Trans. Microwave Theory Tech., MTT-8, 402-10 (1960) https://doi.org/10.1109/TMTT.1960.1124749
  16. J. Takahashi, T. Ikegami and K. Kageyama, J. Am. Ceram. Soc., 74, 1868-72 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07801.x
  17. T. Jaakola, A. Uusimaki, R. Rautioaho and S. Leppavuori, J. Am. Ceram. Soc., 69, C234-5 (1986)