Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.2.107

Improved Densification and Microwave Dielectric Properties of BaO·Nd2O3·5TiO2 Modified with an Iso-Component Borate Glass  

Shin, Dong-Joo (Department of Materials Science and Engineering, Yonsei University)
Lee, Hyung-Sub (Department of Materials Science and Engineering, Yonsei University)
Cho, Yong-Soo (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.18, no.2, 2008 , pp. 107-111 More about this Journal
Abstract
[ $BaO{\cdot}Nd_2O_3{\cdot}5TiO_2$ ] (BNT) ceramics modified with a borate glass containing Ba, Nd and Ti as glass constituents were investigated with regard to their sintering behavior and microwave dielectric properties. An addition of iso-component glass significantly improved the sinterabilty of the BNT ceramics and lowered the sintering temperature. A maximum density of $5.29\;g/cm^3$ and an x-y shrinkage of 17% were obtained for BNT ceramics containing 10wt.% of the glass sintered at $1100^{\circ}C$. The dielectric composition without the glass additive was only slightly densified at $1100^{\circ}C$. The resulting sample exhibited two crystalline phases, $BaNd_2Ti_5O_{14}$ and $Ba_2Ti_9O_{20}$, regardless of sintering temperature and glass content. When >10wt.% glass was added, exaggerated grain growth with a less uniform microstructure was found, resulting in the subsequent reduction of the fired density and the dielectric properties. BNT ceramics containing 10wt.% of the isocomponent glass sintered at $1100^{\circ}C$ for 4 h showed promising dielectric properties of k = 71.3 and Q = 1,330.
Keywords
titanates; glass-ceramic; microwave dielectric; densification;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Kagata, T. Inoue, J. Kato and I. Kameyama, Jpn. J. Appl. Phys., 31, 3152-5 (1992)   DOI
2 W. C. Tzou, C. F. Yang, Y. C. Chen and P. S. Cheng, J. Eur. Ceram. Soc., 20, 991-6 (2000)   DOI   ScienceOn
3 W. Hakki and P. D. Coleman, IRE Trans. Microwave Theory Tech., MTT-8, 402-10 (1960)   DOI
4 J. Takahashi, T. Ikegami and K. Kageyama, J. Am. Ceram. Soc., 74, 1868-72 (1991)   DOI
5 T. Jaakola, A. Uusimaki, R. Rautioaho and S. Leppavuori, J. Am. Ceram. Soc., 69, C234-5 (1986)
6 M. Valant and D. Suvorov, Mater. Chem. Phys., 79, 104-10 (2003)   DOI   ScienceOn
7 A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, H. Alexandru, C. Berbecaru, D. Ghetu and G. Stoica, Mater. Sci. Eng. B, 109, 183-7 (2004)   DOI   ScienceOn
8 X. M. Chen, J. Mater. Sci. Lett., 14, 1041-2 (1995)   DOI
9 Y. D. Xia, G. H. Shi, D. Wu and Z. G. Liu, Thin solid Films, 472, 208-11 (2005)   DOI   ScienceOn
10 A. Yamada, Y. Utsumi and H. Watarai, Jpn. J. Appl. Phys., 30, 2350-3 (1991)   DOI
11 C. H. Lu and Y. H. Huang, Mater. Sci. Eng. B, 98, 33-7 (2003)   DOI   ScienceOn
12 D. Kolar, S. Gaberscek, B. Volavsek, H. S. Parker and R. S. Roth, J. Solid State Chem., 38, 158-64 (1981)   DOI   ScienceOn
13 Y. S. Cho and K. H. Yoon, Handbook of Advanced Electronic and Photonic Materials and Devices; pp. 175-99, Academic Press, SanDiego, 2001
14 C. L. Lo, J. G. Duh, D. S. Chiou and W. H. Lee, J. Am. Ceram. Soc., 85, 2230-5 (2002)   DOI   ScienceOn
15 Q. Zeng, W. Li, J. Shi, J. Guo, M. Zuo and W. Wu, J. Am. Ceram. Soc., 89, 1733-5 (2006)   DOI   ScienceOn
16 X. M. Chen, Y. Suzuki and N. Sato, J. Mater. Sci.: Mater. Electron., 6, 10-6 (1995)   DOI
17 E. A. Nenasheva and N. F. Kartenko, J. Eur. Ceram. Soc., 21, 2697-701 (2001)   DOI   ScienceOn