• Title/Summary/Keyword: dendritic cells

Search Result 388, Processing Time 0.026 seconds

Modulation of IL-12 and IFN-γ Secretions by Eleutheroside E, Tortoside A, and Syringaresinol from Acanthopanax koreanum Nakai

  • Lyu, Su-Yun;Park, Won-Bong
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • Acanthopanax koreanum Nakai (Araliaceae) is a medicinal plant indigenous to Korea. The root and stem barks of Acanthopanax species have been used as a tonic and sedative as well as in the treatment of rheumatism and diabetes. In our study, three lignans, eleutheroside E (EE), tortoside A (TA), and syringaresinol (SY), were isolated from the stem and root of A. koreanum in an effort to study the immunomodulating effect. We treated natural killer cells and dendritic cells with lignans (EE, TA, or SY), and analyzed their cytokine (IL-12 and IFN-${\gamma}$) secretion. EE, TA, or SY markedly enhanced IL-12 secretion in mouse lymphoid (DC1) and myeloid type (DC2.4) dendritic cells after 48 hr of treatment. There were no significant differences in the cytokine stimulatory effects between EE, TA, or SY. Moreover, treatment of EE, TA, or SY significantly induced IFN-${\gamma}$ secretion by human NK cells (NK92MI) confirmed by ELISA assay. This study suggests that lignans from A. koreanum modulate cytokines, and that such modulation may provide the mechanism of action for many of their therapeutic effects.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.

Granulocyte-macrophage colony stimulating factor protects dendritic cells from anticancer drug-induced apoptosis (수지상세포에서 GM-CSF의 항암제유도 세포사멸 방지효과에 관한 연구)

  • Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.607-613
    • /
    • 2003
  • Dendritic cells (DCs) play an essential role in a variety of immune reactions involving $CD4^+$ T cells and have been used to enhance tumor-specific immune responses. Immunosuppression in patients with cancer includes the downregulation of function and number of DCs. Although DCs have been studied, the apoptosis of Des induced by anticancer drugs for chemotherapy remains largely uncharacterized. This study demonstrated that GM-CSF protects DCs from 5-fluorouracil (5-FU) or mitomycin C-induced apoptosis. After 6 - 10 days culture, DCs were characterized by specific surface marker, CD11c and MHC class II. MTT assay revealed that GM-CSF significantly enhanced the viability of DCs treated with 5-FU or mitomycin C. The percentage of dead cells of DCs was determined by cell size using FACScan and GM-CSF was clearly effective. However, GM-CSF did not increase the expression of MHC class II on viable DCs gated, suggesting that GM-CSF may differentially regulate critical factors involved in the function of DCs. For the quantitative analysis of apoptosis, annexin V-FITC staining was performed. 5-FU induced the apoptosis of DCs and GM-CSF significantly protects DCs from 5-FU-induced apoptosis. Taken together, the results in this study that GM-CSF has an anti-apoptosis effect on DCs may provide patients with cancer with clinical benefits to overcome the immunosuppression induced by the decrease of number and functional insufficiency of DCs.

Immunomodulatory Effects of Eckol, a Pure Compound of Ecklonia Cava, on Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.199-203
    • /
    • 2006
  • Background: Eckol purified from Ecklonia cava, a brown alga has been known to have cytoprotective effects on some cell lines against oxidants and ionizing radiation. However, there is no study about the effects of eckol on immune cells. Methods: Bone marrow (BM)-derived dendritic cells (DCs) were used to demonstrate the immunomodulatory effects of eckol on DCs, such as viability, the expression of surface markers, allogeneic stimulating capacity using MTI, flow cytometric, $^3H$-thymidine incorporation assay. Results: Eckol did protect DCs against cytokine withdrawal-induced apoptosis in a concentration dependent manner based on MTT assay. And also, it increased the expression of MHC class II and CD86 (B7.2) molecules, maturation markers, on the surface of viable DCs gated in FACS analysis. Furthermore, eckol-treated DCs stimulated the proliferation of allogeneic $CD4^+$ T lymphocytes compared to imDCs in $^3H$-thymidine incorporation assay. $CD4^+$ T lymphocytes activated with eckol-treated DCs produced the larger amount of IFN-${\gamma}$ and IL-4 than those cells with imDCs. Conclusion: Taken together, we demonstrate in this study that eckol, a pure compound of Ecklonia cava, may modulate the immune responses through the phenotypic and functional changes of DCs.

Dendritic cells resist to disulfiram-induced cytotoxicity, but reduced interleukin-12/23(p40) production

  • Haebeen Jung;Hong-Gu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.471-479
    • /
    • 2023
  • Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.

Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma

  • Kim, Hye-Young;Kang, Hyun Kyu;Cho, Joon;Jung, In Duk;Yoon, Gun Young;Lee, Min-Goo;Shin, Sung Jae;Park, Won Sun;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min;You, Ji Chang
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.178-183
    • /
    • 2015
  • Dendritic cells play an important role in determining whether na${\ddot{i}}$ve T cells mature into either Th1 or Th2 cells. We determined whether heat-shock protein X (HspX) purified from Mycobacterium tuberculosis regulates the Th1/Th2 immune response in an ovalbumin (OVA)-induced murine model of asthma. HspX increased interferon-gamma, IL-17A, -12 and transforming growth factor (TGF)-${\beta}$ production and T-bet gene expression but reduced IL-13 production and GATA-3 gene expression. HspX also inhibited asthmatic reactions as demonstrated by an increase in the number of eosinophils in bronchoalveolar lavage fluid, inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyper-responsiveness. Furthermore, HspX enhanced OVA-induced decrease of regulatory T cells in the mediastinal lymph nodes. This study provides evidence that HspX plays critical roles in the amelioration of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of HspX with respect to its effects on a murine model of asthma.

Inhibitory effects of Nardostachys Jatamansi on the maturation of dendritic cells (감송향이 수지상세포 성숙에 미치는 영향)

  • O, Kwang-Woo;Jeong, Ji-Hye;Cheong, Hyun-Cheol;Cho, Han-Baek;Kim, Song-Baeg;Choe, Chang-Min
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.3
    • /
    • pp.14-25
    • /
    • 2010
  • Purpose: The purpose of this study is to investigate inhibitory effect on the maturation of dendritic cells from aqueous extract from Nardostachys Jatamansi(NJ). Methods: I examined the phenotypic maturation(class II MHC, CD40, CD86), expression of pro-inflammatory cytokine(TNF-$\alpha$, IL-6, IL-12) and endocytosis of FITC-Dextran in the LPS-induced bone marrow-derived dendritic cells(BMDCs) of mice. Furthermore, the Western-blot analysis reveals the mechanism of inhibitory effect. Results: 1. The NJ extract inhibited the phenotypic maturation of BMDCs in a dose-dependent manner. 2. The NJ extract inhibited the LPS induced cytokine production of BMDCs in a dose-dependent manner. 3. The NJ extract enhanced the endocytosis of Dex-FITC in LPS treated DC. 4. The NJ extract inhibited the activation of JNK and p38 phosphorylation, but not ERK phosphorylation of MAPK family and doesn't inhibit Ik-Ba degradation in LPS-stimulated BMDCs. Conclusion: These results suggest that NJ extract is able to attenuate the inflammation and maturation in BMDCs and may inhibit proliferation of T cells. In conclusion, this experiment suggests that NJ extract may be useful in hypersensitivity disease including autoimmune disease.

Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells

  • Wei Xia;Zongdong Zhu;Song Xiang;Yi Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.784-794
    • /
    • 2023
  • Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

Effects of Salviae miltiorrhizae Radix Extract on Gene Expression of Dendritic cells. (단삼이 수지상 세포의 유전자 발현에 미치는 영향)

  • Chiang, Wen-Lih;Kim, Jong-Han;Choi, Jeong-Hwa;Park, Su-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.52-68
    • /
    • 2008
  • Objectives and Methods : Salviae miltiorrhizae Radix (SMR) promotes blood circulation to remove blood stasis, cools the blood to relieve carbuncle, clears away heat from the heart and tranquilizes the mind. This study was designed to investigate the effects of SMR on immuno-potentiative action in terms of changes in the genetic profile of dendritic cells (DC) using by microarray analysis. Results and Conclusion: In this experiment, treatments with more than 250 ${\mu}g/ml$ upto 1000 ${\mu}g/ml$ of SMR elevated the proliferation rates of DC. Microscopic observations confirmed the tendency on proliferation rates. Expression levels of genes related with cellular methabolic process, cell communication, and macromolecule metabolic process were elevated by treatment with SMR in comparison of functional distribution in a Biological Process. In molecular functions, expression levels of genes related with receptor activation, nucleotide binding and nucleic acid binding were elevated. In cellular components, expression levels of genes related to cellular membrane-bound organelles were elevated. In addition, expression levels of genes related to Wnt signalling pathways and the glycerophospholipid metabolism were elevated through analysis using pathway analysis between up-and down-regulated genes in cells treated with SMR. Finally, genes related to JAK2, GRB2, CDC42, SMAD4, B2M, FOS and ESRI located the center of Protein interaction network of genes through treatment with SMR.

  • PDF