DOI QR코드

DOI QR Code

Modulation of IL-12 and IFN-γ Secretions by Eleutheroside E, Tortoside A, and Syringaresinol from Acanthopanax koreanum Nakai

  • Lyu, Su-Yun (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Park, Won-Bong (Department of Chemistry, College of Natural Sciences, Seoul Women's University)
  • Received : 2010.04.06
  • Accepted : 2010.04.19
  • Published : 2010.04.30

Abstract

Acanthopanax koreanum Nakai (Araliaceae) is a medicinal plant indigenous to Korea. The root and stem barks of Acanthopanax species have been used as a tonic and sedative as well as in the treatment of rheumatism and diabetes. In our study, three lignans, eleutheroside E (EE), tortoside A (TA), and syringaresinol (SY), were isolated from the stem and root of A. koreanum in an effort to study the immunomodulating effect. We treated natural killer cells and dendritic cells with lignans (EE, TA, or SY), and analyzed their cytokine (IL-12 and IFN-${\gamma}$) secretion. EE, TA, or SY markedly enhanced IL-12 secretion in mouse lymphoid (DC1) and myeloid type (DC2.4) dendritic cells after 48 hr of treatment. There were no significant differences in the cytokine stimulatory effects between EE, TA, or SY. Moreover, treatment of EE, TA, or SY significantly induced IFN-${\gamma}$ secretion by human NK cells (NK92MI) confirmed by ELISA assay. This study suggests that lignans from A. koreanum modulate cytokines, and that such modulation may provide the mechanism of action for many of their therapeutic effects.

Keywords

References

  1. Arroo, R. R. J., Alfermann, A. W., Medarde, M., Petersen, M., Pras, N. and Woolley, J. G. (2002). Plant cell factories as a source for anti-cancer lignans. Phytochem. Rev. 1, 27-35. https://doi.org/10.1023/A:1015824000904
  2. Ban, H. S., Lee, S., Kim, Y. P., Yamaki, K., Shin, K. H. and Ohuchi, K. (2002). Inhibition of prostaglandin E2 production by taiwanin C isolated from the root of Acanthopanax chiisanensis and the mechianism of action. Biochem. Pharmcol. 64, 1345-1354. https://doi.org/10.1016/S0006-2952(02)01348-5
  3. Banchereau, J. and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
  4. Cai, X. F., Lee, I. S., Dat, N. T., Shen, G., Kang, J. S., Kim, D. H. and Kim, Y. H. (2004). Inhibitory lignans against NFAT transcription factor from Acanthopanax koreanum. Arch. Pharm. Res. 27, 738-741 https://doi.org/10.1007/BF02980142
  5. Cai, X. F., Shen, G., Dat, N. T., Kang, O. H., Kim, J. A., Lee, Y. M., Lee, J. J. and Kim, Y. H. (2003). Inhibitory effect of TNF-alpha and IL-8 secretion by pimarane-type diterpenoids from Acanthopanax koreanum. Chem. Pharm. Bull. (Tokyo) 51, 605-607. https://doi.org/10.1248/cpb.51.605
  6. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A. and Alber, G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747-752. https://doi.org/10.1084/jem.184.2.747
  7. Cotterchio, M., Boucher, B. A., Manno, M., Gallinger, S., Okey, A. and Harper, P. (2006). Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J. Nutr. 136, 3046-3053. https://doi.org/10.1093/jn/136.12.3046
  8. Filipe-Santos, O., Bustamante, J., Chapgier, A., Vogt, G., de Beaucoudrey, L., Feinberg, J., Jouanguy, E., Boisson-Dupuis, S., Fieschi, C., Picard, C. and Casanova, J. L. (2006). Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol. 18, 347-361. https://doi.org/10.1016/j.smim.2006.07.010
  9. Gabay, C. and Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448-454. https://doi.org/10.1056/NEJM199902113400607
  10. Kang, H. S., Kim, Y. H., Lee, C. S., Lee, J. J., Choi, I. and Pyun, K. H. (1996). Suppression of interleukin-1 and tumor necrosis factor-alpha production by acanthoic acid, (−)- pimara-9(11),15-dien-19-oic acid, and it antifibrotic effects in vivo. Cell Immun. 170, 212-221. https://doi.org/10.1006/cimm.1996.0154
  11. Kang, J. S., Linh, P. T., Cai, X. F., Kim, H. S., Lee, J. J. and Kim, Y. H. (2001). Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography. Arch. Pharm. Res. 24, 407-411. https://doi.org/10.1007/BF02975184
  12. Kim, J. A., Kim, D. K., Jin, T., Kang, O. H., Choi, Y. A., Choi, S. C., Kim, T. H., Nah, Y. H., Choi, S. J., Kim, Y. H., Bae, K. H. and Lee, Y. M. (2004). Acanthoic acid inhibits IL-8 production via MAPKs and NF-kappaB in a TNF-alpha-stimulated human intestinal epithelial cell line. Clin. Chim. Acta. 342, 193-202. https://doi.org/10.1016/j.cccn.2004.01.004
  13. Kim, Y. H. and Chung, B. S. (1988). Pimaradiene diterpenes from Acanthopanax koreanum. J. Nat. Prod. 51, 1080-1083. https://doi.org/10.1021/np50060a005
  14. Kim, Y. H., Kim, H. S., Lee, S. W., Uramoto, M. and Lee, J. J. (1995). Kaurane derivatives from Acanthopanax koreanum. Phytochemistry. 39, 449-451. https://doi.org/10.1016/0031-9422(95)99385-2
  15. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N. and Schuler, G. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741-746. https://doi.org/10.1084/jem.184.2.741
  16. Krawczyk, P., Wojas, K., Milanowski, P. and Roliński, J. (2006). Myeloid and lymphoid dendritic cells and cytotoxic T lymphocytes in peripheral blood of non-small cell lung cancer patient--a pilot study. Adv. Med. Sci. 51, 160-163.
  17. Lee, S., Son, D., Ryu, J., Lee, Y. S., Jung, S. H., Kang, J., Lee, S. Y., Kim, H. S. and Kuk, H. S. (2004). Anti-Oxidant Activities of Acanthopanax senticosus Stems and their Lignan components. Arch. Pharm. Res. 27, 106-110. https://doi.org/10.1007/BF02980055
  18. Lin, Q. Y., Jin, L. J., Cao, Z. H. and Xu, Y. P. (2008). Nhibition of inducible nitric oxide synthase by Acanthopanax senticosus extract in RAW264.7 macrophages. J. Ethnopharmacol. 118, 231-236. https://doi.org/10.1016/j.jep.2008.04.003
  19. Lyu, S. Y. and Park, W. B. (2008). Th1/Th2 cytokine modulation in human PBMC by Acanthopanax divaricatus var. albeofructus. Food Sci. Biotechnol. 17, 631-636.
  20. Maher, S. G., Romero-Weaver, A. L., Scarzello, A. J. and Gamero, A. M. (2007). Interferon: cellular executioner or white knight? Curr. Med. Chem. 14, 1279-1289. https://doi.org/10.2174/092986707780597907
  21. Messina, M. and Barnes, S. (1991). The role of soy products in reducing risk of cancer. J. Natl. Cancer Inst. 83, 541-546. https://doi.org/10.1093/jnci/83.8.541
  22. Mocikat, R., Braumuller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., Koszinowski, U. and Rocken, M. (2003). Natural killer cells activated by MHC class I (low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561-569. https://doi.org/10.1016/S1074-7613(03)00264-4
  23. Morse, M. A., Lyerly, H. K., Gilboa, E., Thomas, E. and Nair, S. K. (1998). Optimization of the sequence of antigen loading and CD40-ligand-induced maturation of dendritic cells. Cancer Res. 58, 2965-2968.
  24. Murkies, A. L., Wilcox, G. and Davis, S. R. (1998). Clinical review 92: Phytoestrogens. J. Clin. Endocrinol. Metab. 83, 297-303. https://doi.org/10.1210/jc.83.2.297
  25. Nan, J. X., Park, E. J., Nam, J. B., Zhao, Y. Z., Cai, X. F., Kim, Y. H., Sohn, D. H. and Lee, J. J. (2004). Effect of Acanthopanax koreanum nakai (Araliaceae) on D-galactosamine and lipopolysaccharide-induced fulminant hepatitis. J. Ethnopharmacol. 92, 71-77. https://doi.org/10.1016/j.jep.2004.02.007
  26. Nhiem, N. X., Tung, N. H., Kiem, P. V., Minh, C. V., Ding, Y., Hyun, J. H., Kang, H. K. and Kim, Y. H. (2009). Lupane triterpene glycosides from leave of Acanthopanax koreanum and their cytotoxic activity. Chem. Pharm. Bull. (Tokyo) 57, 986-989. https://doi.org/10.1248/cpb.57.986
  27. Oleksowicz, L. and Dutcher, J. P. (1994). A review of the new cytokines: IL-4, IL-6, IL-11, and IL-12. Am. J. Ther. 1, 107-115. https://doi.org/10.1097/00045391-199408000-00002
  28. Perry, L. M. and Metzger, J. (1980). Medicinal plants of East and Southeast Asia. MIT Press., Cambridge, MA, London.
  29. Pool-Zobel, B. L., Aldercreutz, H., Glei, M., Liegibel, U. M., Sittlington, J., Rowland, I., Wahala, K. and Rechkemmer, G. (2000). Isoflavonoids and lignans have different potentials to modulate oxidative genetic damage in human colon cells. Carcinogenesis 21, 1247-1252. https://doi.org/10.1093/carcin/21.6.1247
  30. Reis e Sousa, C., Hieny, S., Scharton-Kersten, T., Jankovic, D., Charest, H., Germain, R. N. and Sher, A. (1997). In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819-1829. https://doi.org/10.1084/jem.186.11.1819
  31. Shi, F. D., Ljunggren, H. G. and Sarvetnick, N. (2001). Innate immunity and autoimmunity: from self-protection to selfdestruction. Trends Immunol. 22, 97-101. https://doi.org/10.1016/S1471-4906(00)01821-4
  32. Spelman, K., Burns, J., Nichols, D., Winters, N., Ottersberg, S. and Tenborg, M. (2006). Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern. Med. Rev. 11, 128-150.
  33. Thompson, L. U., Boucher, B. A., Liu, Z., Cotterchio, M. and Kreiger, N. (2006). Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 54, 184-201. https://doi.org/10.1207/s15327914nc5402_5
  34. Thompson, L. U., Chen, J. M., Li, T., Strasser-Weippl, K. and Goss, P. E. (2005). Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin. Cancer Res. 11, 3828-3835. https://doi.org/10.1158/1078-0432.CCR-04-2326
  35. Trinchieri, G. (1998). Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83-243. https://doi.org/10.1016/S0065-2776(08)60387-9
  36. Vissers, J. L. M., Hartgers, F. C., Lindhout, E., Teunissen, M. B. M., Figdor, C. G. and Adema, G. A. (2001). Quantitative analysis of chemokine expression by dendritic cell subsets in vitro and in vivo. J. Leukoc. Biol. 69, 785-793.
  37. Wang, L., Chen, J. and Thompson, L. U. (2005). The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis Attributed to both its lignan and oil components. Int. J. Cancer 116, 793-798. https://doi.org/10.1002/ijc.21067
  38. Yook, C. S., Kim, I. H., Hahn, D. R., Nohara, T. and Chang, S. Y. (1998). A lupane-triterpene glycoside from leaves of two Acanthopanax. Phytochemistry 49, 839-843. https://doi.org/10.1016/S0031-9422(97)00846-7
  39. Zitvogel, L. (2002). Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J. Exp. Med. 195, F9-F14. https://doi.org/10.1084/jem.20012040

Cited by

  1. Determination of Eleutherosides and β-Glucan Content from Different Parts and Cultivating Areas of A. senticosus and A. koreanum vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.2082
  2. Chemical constituents from the stems of Acanthopanax divaricatus var. albeofructus vol.57, 2014, https://doi.org/10.1016/j.bse.2014.08.008
  3. Evaluation of the Mutagenic Properties of Two Lignans from Acanthopanax koreanum Nakai vol.29, pp.4, 2013, https://doi.org/10.5487/TR.2013.29.4.279
  4. Anti-inflammatory Lignans from the Fruits of Acanthopanax sessiliflorus vol.18, pp.1, 2010, https://doi.org/10.3390/molecules18010041
  5. Anti-Inflammatory Effects of Fermented Bark of Acanthopanax sessiliflorus and Its Isolated Compounds on Lipopolysaccharide-Treated RAW 264.7 Macrophage Cells vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/6749425
  6. A New Megastigmane Glucoside and Other Constituents from Desmodium gangeticum vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/7416973
  7. Impressic Acid Ameliorates Atopic Dermatitis-Like Skin Lesions by Inhibiting ERK1/2-Mediated Phosphorylation of NF-κB and STAT1 vol.22, pp.5, 2010, https://doi.org/10.3390/ijms22052334