• Title/Summary/Keyword: denaturing gradient gel electrophoresis

Search Result 197, Processing Time 0.021 seconds

Plant Growth Promotion by Isolated Strain of Bacillus subtilis for Revegetation of Barren Lakeside Area (호안나대지 식생복원을 위한 Bacillus subtilis 분리균주의 식물생장 촉진능)

  • Kim, Kyung-Mi;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • Rhizobacterial strain isolated from barren soil, Bacillus subtilis RFO41 exhibits a high level of phosphate solubilizing activity and produces some phytohormones. Its promoting effect on the growth of Xanthium italicum Moore, a wild plant growing at lakeside barren land and thus a good candidate plant for revegetation of barren lakeside was evaluated in the in situ test for 19 weeks at Lake Paro, Kangwon-do. Strain RFO41 could enhance the dry weight of X. italicum by 67.7%. It also increased the shoot length of X. italicum plant by 21.1% compared to that of uninoculated control. Both growth enhancements had statistical significance. However, the inoculation did not show any effect on the root growth, which might be due to the breakage of tiny root. Denaturing gradient gel electrophoresis analysis showed that the inoculated bacteria were maintained in the soils, and the indigenous bacterial community did not exhibit any significant change. This plant growth promoting capability may be utilized as an environment-friendly and low cost revegetation method, especially for the sensitive areas such as barren lakeside lands.

Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments

  • Baek, Kyung-Hwa;Yoon, Byung-Dae;Kim, Byung-Hyuk;Cho, Dae-Hyun;Lee, In-Sook;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.

Microbial Dynamics of Commercial Makgeolli Depending on the Storage Temperature

  • Kim, Hye-Ryun;Lee, Ae Ran;Kim, Jae-Ho;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1101-1106
    • /
    • 2012
  • Market fresh makgeolli was stored at different temperatures of $4^{\circ}C$ and $25^{\circ}C$ to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at $4^{\circ}C$, and increased from day 6 of storage in the makgeolli stored at $25^{\circ}C$. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at $4^{\circ}C$ and $25^{\circ}C$, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at $4^{\circ}C$, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at $25^{\circ}C$. In particular, in the makgeolli stored at $25^{\circ}C$, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli.

Application of Biological Activated Carbon Process for Water Quality Improvement of Stagnant Stream Channels

  • Lee, Jae-Ho;Park, Jeung-Jin;Park, Tae-Joo;Byun, Im-Gyu
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • The water quality improvement of golf course ponds, as representative stagnant stream channels, was evaluated by applying a biological activated carbon (BAC) process composed of four consecutive activated carbon reactors. The study was performed from autumn to winter in order to evaluate the feasibility of the BAC process under low temperature conditions. In the study, water quality of pond A (target pond) and pond B (reference pond) were monitored. Pond water was pumped into the BAC process, and was then returned to the pond after treatment. The optimal conditions were determined to be 2 hr of empty bed contact time (EBCT) at a temperature above $4^{\circ}C$, in which improvements of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) of pond A compared to pond B were 3.62%, 3.48% and 1.81%, respectively. On the other hand, as the temperature was below $4^{\circ}C$, some degree of water quality improvement was achieved even when EBCT were 1 or 0.5 hr, suggesting that the BAC process can be successfully applied for the improvement of pond water quality in winter months. The values of biomass concentration and microorganism activity in each condition were highest where 2 hr of EBCT was applied at a temperature above $4^{\circ}C$, but values were similar throughout all treatment conditions, and thus, adsorption is considered to be the dominant factor affecting process efficiency. From the denaturing gel gradient electrophoresis (DGGE) results, no significant differences were observed among the activated carbon reactors, suggesting that the number of reactors in the system could be decreased for a more compact application of the system.

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Identification and Characterization of Single Nucleotide Polymorphisms of SLC22A11 (hOAT4) in Korean Women Osteoporosis Patients

  • Lee, Woon Kyu;Kwak, Jin Oh;Hwang, Ji-Sun;Suh, Chang Kook;Cha, Seok Ho
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.265-271
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most common form of human genetic variation. Non-synonymous SNPs (nsSNPs) change an amino acid. Organic anion transporters (OATs) play an important role in eliminating or reabsorbing endogenous and exogenous organic anionic compounds. Among OATs, hOAT4 mediates high affinity transport of estrone sulfate and dehydroepiandrosterone sulfate. The rapid bone loss that occurs in post-menopausal women is mainly due to a net decrease of estrogen. In the present study we searched for SNPs within the exon regions of hOAT4 in Korean women osteoporosis patients. Fifty healthy subjects and 50 subjects with osteoporosis were screened for genetic polymorphism in the coding region of SLC22A11 (hOAT4) using GC-clamp PCR and denaturing gradient gel electrophoresis (DGGE). We found three SNPs in the hOAT4 gene. Two were in the osteoporosis group (C483A and G832A) and one in the normal group (C847T). One of the SNPs, G832A, is an nsSNP that changes the $278^{th}$ amino acid from glutamic acid to lysine (E278K). Uptake of [$3^H$] estrone sulfate by oocytes injected with the hOAT4 E278K mutant was reduced compared with wild-type hOAT4. Km values for wild type and E278K were $0.7{\mu}M$ and $1.2{\mu}M$, and Vmax values were 1.8 and 0.47 pmol/oocyte/h, respectively. The present study demonstrates that hOAT4 variants can causing inter-individual variation in anionic drug uptake and, therefore, could be used as markers for certain diseases including osteoporosis.

Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows

  • Yang, Lina;Bian, Gaorui;Su, Yong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.898-906
    • /
    • 2014
  • The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil

  • Li, Peipei;Zhang, Dongdong;Wang, Xiaojuan;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.126-132
    • /
    • 2012
  • A cellulose-degrading composite microbial system containing a mixture of microbes was previously shown to demonstrate a high straw-degrading capacity. To estimate its potential utilization as an inoculant to accelerate straw biodegradation after returning straw to the field, two cellulose-degrading composite microbial systems named ADS3 and WSD5 were inoculated into wheat straw-amended soil in the laboratory. The microbial survival of the inoculant was confirmed by a denaturing gradient gel electrophoresis (DGGE) analysis, whereas the enhancement of straw degradation in soil was assessed by measuring the mineralization of the soil organic matter and the soil cellulase activity. The results indicated that most of the DGGE bands from ADS3 were detected after inoculation into straw-amended autoclaved soil, yet only certain bands from ADS3 and WSD5 were detected after inoculation into straw-amended non-autoclaved soil during five weeks of incubation; some bands were detected during the first two weeks after inoculation, and then disappeared in later stages. Organic matter mineralization was significantly higher in the soil inoculants ADS3 and WSD5 than in the uninoculated controls during the first week, yet the enhanced degradation did not persist during the subsequent incubation. Similar to the increase in soil organic matter, the cellulase activity also increased during the first week in the ADS3 and WSD5 treatments, yet decreased during the remainder of the incubation period. Thus, it was concluded that, although the survival and performance of the two inoculants did not persist in the soil, a significant enhancement of degradation was present during the early stage of incubation.

Analysis of Microbial Communities During Cyanobacterial Bloom in Daechung Reservoir by DGGE (DGGE를 이용한 대청호 수화 발생시기의 세균군집 분석)

  • Ko So-Ra;Park Seong-Joo;Ahn Chi-Yong;Choi Aeran;Lee Jung-Sook;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2004
  • The change of bacterial communities during cyanobacterial bloom was analyzed by DGGE in Daechung Reservoir from July to October in 2003. The traditional morphological analysis showed that the genera of Microcystis, Chroococcus, Oscillatoria, and Phormidium were dominated. The most frequent band in the DGGE profile by 16S rDNA sequence analysis was identified as Microcystis flos-aquae and the cyanobacterial bloom was peaked on September 2. Oscillatoria spp. were also identified and Aphanizomenon flos-aquae dominated in the middle of August. Judging from the analysis of the digitalized DGGE profiles using the cluster analysis technique, the microbial community on September 2 was considerably different from others. Consequently, it seems that the gene fingerprinting method can give not only the similar results to the traditional morphological method but also additional information on the bacterial species and similarity among the examined microbial communities.