Browse > Article

Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments  

Baek, Kyung-Hwa (Environmental Biotechnology, Research Center, KRIBB)
Yoon, Byung-Dae (Environmental Biotechnology, Research Center, KRIBB)
Kim, Byung-Hyuk (Environmental Biotechnology, Research Center, KRIBB)
Cho, Dae-Hyun (Environmental Biotechnology, Research Center, KRIBB)
Lee, In-Sook (Department of Life Science, Ewha Womans University)
Oh, Hee-Mock (Environmental Biotechnology, Research Center, KRIBB)
Kim, Hee-Sik (Environmental Biotechnology, Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 67-73 More about this Journal
Abstract
The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.
Keywords
alkB gene; bioaugmentation; biostimulation; biosurfactant; denaturing gradient gel electrophoresis; microbial community;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Baek, K.-H., B.-D. Yoon, I.-S. Lee, H.-M. Oh, and H.-S. Kim. 2006. Biodegradation of aliphatic aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiol. J. 23: 253-259   DOI   ScienceOn
2 Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores. Technol. 96: 1049-1055   DOI   ScienceOn
3 Cheung, P. and B. K. Kinkle. 2005. Effects of nutrients and surfactants on pyrene mineralization and Mycobacterium spp. populations in contaminated soil. Soil Biol. Biochem. 37: 1401-1405   DOI   ScienceOn
4 Kim, H.-S., B.-D. Yoon, D.-H. Choung, H.-M. Oh, T. Katsuragi, and Y. Tani. 1999. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 52: 713- 721   DOI   ScienceOn
5 Margesin, R. and F. Schinner. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in Alpine glacier sking area. Appl. Environ. Microbiol. 67: 3127-3133   DOI   ScienceOn
6 MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
7 Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203   DOI   ScienceOn
8 Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL
9 Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688   DOI
10 Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241   DOI   ScienceOn
11 Watanabe, K. and N. Hamamura. 2003. Molecular and physiological approaches to understand the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14: 289-295   DOI   ScienceOn
12 Widada, J., H. Nojiri, and T. Omori. 2002. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Environ. 60: 45-59
13 Hua, Z., Y. Chen, G. Du, and J. Chen. 2004. Effect of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J. Microbiol. Biotechnol. 20: 25-29   DOI
14 Jung, S.-Y., J.-H. Lee, Y.-G. Chai, and S.-J. Kim. 2005. Monitoring of microorganisms added into oil-contaminated microenvironments by terminal-restriction fragment length polymorphism analysis. J. Microbiol. Biotechnol. 15: 1170- 1177   과학기술학회마을
15 Kim, H.-S., J.-W. Jeon, S.-B. Kim, H.-M. Oh, T.-J. Kwon, and B.-D. Yoon. 2002. Surface and physico-chemical properties of glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol. Lett. 24: 1637- 1641   DOI   ScienceOn
16 Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Poll. 136: 187- 195   DOI   ScienceOn
17 Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. L. Klironomos, H. Lee, and J. T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods 58: 169-188   DOI   ScienceOn
18 Muyzer, G., S. Hottentrager, A. Teske, and C. Wawer. 1996. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyze the genetic diversity of mixed microbial communities, pp. 3.4.4:1- 3.4.4:23. In A. D. L. Akkermans, J. D. van Elsas, and F. J. De Bruijin (eds.), Molecular Microbial Ecology Manual, 2nd Ed. Kluwer Academic Publishers, The Netherlands
19 Ron, E. Z. and E. Rosenberg. 2002. Biosurfactant and oil bioremediation. Curr. Opin. Biotechnol. 13: 249-252   DOI   ScienceOn
20 Stapleton, R. D., G. S. Sayler, J. K. Boggs, E. L. Libelo, T. Stauffer, and W. G. Macintyre. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ. Sci. Technol. 34: 1991- 1999   DOI   ScienceOn
21 Hendrichx, B., W. Dejonghe, F. Faber, W. Boenne, L. Bastiaens, W. Verstraete, E. M. Top, and D. Springael. 2006. PCR-DGGE method to assess the diversity of BTEX monooxygenase genes at contaminated sites. FEMS Microbiol. Ecol. 55: 262-273   DOI   ScienceOn
22 Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
23 Roling, W. F., M. G. Milner, M. Jones, K. Lee, F. Daniel, R. J. P. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548   DOI   ScienceOn
24 Seklemova, E., A. Pavlova, and K. Kovacheva. 2001. Biostimulation based bioremediation of diesel fuel: Field demonstration. Biodegradation 12: 311-316   DOI   ScienceOn
25 Dua, M., A. Singh, N. Sethunathan, and A. K. Johri. 2002. Biotechnology and bioremediation: Succession and limitation. Appl. Microbiol. Biotechnol. 59: 143-152   DOI   ScienceOn
26 Kaplan, C. W. and C. Kitts. 2004. Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70: 1777-1786   DOI   ScienceOn
27 Ruberto, L., S. C. Vazquez, and W. P. MacCormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of hydrocarbon contaminated Antarctic soil. Int. Biodeter. Biodegrad. 52: 115-125   DOI   ScienceOn
28 Iwamoto, T., K. Tani, K. Nakamura, Y. Suzuki, M. Kitagawa, M. Eguchi, and M. Nasu. 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol. Ecol. 32: 129-141   DOI   ScienceOn
29 Ahn, J.-H., M.-S. Kim, M.-C. Kim, J.-S. Lim, G.-T. Lee, J. K. Yun, T. Kim, T. Kim, and J.-O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715   과학기술학회마을
30 Bong, B. W., W. R. Lahner, W. R. Sullivan, and J. R. Paterek. 2003. Degradation of straight-chain aliphatic and high-molecular weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J. Appl. Microbiol. 94: 230-239   DOI   ScienceOn