• Title/Summary/Keyword: delamination.

Search Result 997, Processing Time 0.025 seconds

CHARACTERISTICS OF DIAMONDLIKE CARBON COATED ALUMINA SEALS AT TEMPERATURES UP TO $400^{\circ}C$ (플라즈마 증착방식에 의해 DLC코팅된 알루미나 세라믹의 코팅박막 특성에 관한 연구)

  • Ok, Chul-Ho;Kim, Byoung-Yong;Kang, Dong-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.397-397
    • /
    • 2007
  • Diamondlike carbon (DLC) coatings were deposited on alumina ceramic seals using a plasma immersion ion deposition technique (PIID). Then they were subjected to tribological tests using a pin-on-disc tribometer under a high load (1.3 GPa) and under elevated temperatures up to 400C. Coefficients of friction (COFs) were recorded and compared with that of the untreated alumina while the wear tracks were analyzed using SEM with EDS to characterize the DLC films. To enhance the DLC adhesion to the substrate, various interlayers including Si and Cr were deposited using the PIID process or an ion beam assisted deposition (IBAD) method. It was observed that the DLC coating, if adhering well to the substrate, reduced the COFs significantly, from 0.4-0.8 for the uncoated alumina to about 0.05-0.1, within the tested temperature range. The adhesion was determined by the interlayer type and possibly by the application method. Cr interlayer did not perform as well as the Si interlayer. This could also be due to the fact that the Cr interlayer and the subsequent DLC coating had to be done in two different processing systems, while both the Si interlayer and the subsequent DLC film were deposited in one system without breaking the chamber. The coating failure mode was found to be delamination between the Cr and the alumina substrate. In contrast, the Si interlayer with proper DLC deposition procedures resulted in very good adhesion and hence excellent tribological performance. Further study may lead to future DLC applications of ceramic seals.

  • PDF

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

Stacking method of thick composite laminates considering interlaminar normal stresses (층간수직응력을 고려한 두꺼운 복합적층판의 적층방법)

  • 김동민;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.944-951
    • /
    • 1988
  • Global-Local Laminate Variational Model is utilized to investigate the characteristics of interlaminar stresses in thick composite laminates under uniform axial extension. Various laminates with different fiber orientation and stacking sequences are analyzed to observe the behavior of interlaminar normal stresses. From this result, the interlaminar normal stress distribution along the laminate interfaces is examined and discussed with an existing approximation model. The repeated stacking of Poisson's ratio symmetric sublaminates is found to be the best stacking method of thick composite laminates to reduce the interlaminar normal stresses for the prevention of the free-edge delamination.

Fracture Behavior of CFRP by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 CFRP의 파괴 거동)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Lee, Sang-Kee;Kim, Hyun-Soo;Moon, Chang-Kwon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, however, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency analysis methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, damage process of a cross-ply carbon fiber reinforced plastic (CFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of CFRP specimens were used to determine the characteristics of AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanisms in CFRP such as mix cracking, debonding, fiber fracture and delamination.

  • PDF

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

Wavelet Transform Based Doconvolution of Ultrasonic Pulse-Echo Signal (웨이브렛 변환을 이용한 초음파 펄스 에코 신호의 디컨볼루션)

  • Jhang, Kyung-Young;Jang, Hyo-Seong;Park, Byung-Yll;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are superimposed. We can easily meet this problem when the silicon chip layer in the semiconductor is inspected by a SAM equipment using fairly low frequency lower than 20MHz by which severe attenuation in the epoxy mold compound of packaging material can be overcome. Conventionally, deconvolution technique has been used for the decomposition of superimposed UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution(WTBD) technique is proposed as a new signal processing method that can decompose the superimposed echo signals with superior performances compared to the conventional deconvolution technique. WTBD method uses the wavelet transform in the pre-stage of deconvolution to extract out the common waveform from the transmitted and received signal with distortion. Performances of the proposed method we shown by through computer simulations using model signal with noise and we demonstrated by through experiments for the fabricated semiconductor sample with partial delamination at the top of silicon chip layer.

  • PDF

Failure of RC Slabs Strengthened with CFRP Plate (탄소섬유판으로 보강한 철근콘크리트 슬래브의 파괴)

  • Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1999
  • Carbon fibre reinforced plastic(CFRP) plate is one of the alternative materials for strengthening of reinforced and prestressed concrete members due to excellent strength and light weight. In this paper, the behavior of slabs strengthened with CFRP plate is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear force appear in same position. The failure mode is a peeling-off of the CFRP plate due to flexural-shear crack. This is observed near the loading points with thick plates. Because of this failure mode, thickness of CFRP plates does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When large moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened slab and moment of unstrengthened slab is proposed 1.5-2.0.

  • PDF

Radar Probing of Concrete Specimens Using Frequency Domain Filtering (주파수 영역 필터링을 통한 콘크리트 시편 내부 레이더 탐사)

  • 임홍철;이윤식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • Radar method can be effective in probing concrete structures damaged by earthquake. Data analysis is usually performed in time domain, by considering time delay of the wave due to the dielectric constant of concrete. In this study, improved data analysis has been performed using signal processing scheme of spectra analysis and filtering. Three antenna with 900MHz, 1㎓, and 1.5㎓ center frequency were used to detect a steel bar or delamination in specimens for obtaining data, Frequency spectrum was filtered in low pass, high pass, and band pass varying cutoff frequency with 1/3 octave in frequency domain. The most effective cutoff frequency for each frequency has been determined as the range for 2 octave lower to 1 octave higher and 2 octave lower to 1 octave lower. This result provided a basis in improving data analysis capability using frequency domain filtering.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.