Browse > Article
http://dx.doi.org/10.5574/IJOSE.2012.2.2.106

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant  

Murakami, Ri-Ichi (Department of Mechanical Engineering,The University of Tokushima)
Yahya, Syed Qamma Bin (Department of Mechanical Engineering,The University of Tokushima)
Publication Information
International Journal of Ocean System Engineering / v.2, no.2, 2012 , pp. 106-115 More about this Journal
Abstract
In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.
Keywords
Ball-on-disk; Wear test; AIP; Chromium nitride; Titanium nitride; Thin film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. D. Lai, J. K. Wu, Surf. Coat. Technol. 64 (1994) 53.   DOI   ScienceOn
2 P. Hones, R. Consiglio, N. Randall, F. Levy, Surf. Coat. Technol. 125 (2000) 179.   DOI   ScienceOn
3 I. Milosev, J. M. Abels, H. H. Strehblow, B. Navinsek, M. MetikosHukovic, J. Vac. Sci. Technol. A 14 (1996) 2527.   DOI   ScienceOn
4 B. Navinsek, P. Panjan, Surf. Coat. Technol. 59 (1993) 244.   DOI   ScienceOn
5 S. J. Bull, D. S. Rickerby, Surf. Coat. Technol. 43-44 (1990) 732.   DOI   ScienceOn
6 E. Martinez, J. Romero, A. Lousa, J. Esteve, A. Lousa, J. Esteve, Surf. Coat. Technol. 163-164 (2003) 571.   DOI   ScienceOn
7 Y-Z Lee, K-H Jeong, Wear 217 (1998) 175.   DOI   ScienceOn
8 R. Thom, L. Moore, Surf. Coat. Technol. 62 (1993) 423.   DOI   ScienceOn
9 T. Kacsich, K.-P.- Lieb, Thin Solid Films 235 (1994) 4.
10 C. Gautier, H. Moussaoui, F. Elstner, Surf. Coat. Technol. 86-87 (1996) 254.   DOI   ScienceOn
11 Y. L. Su, S. H. Yao, Z. L. Leu, C. S. Wei, C. T. Wu, Wear 213 (1997) 165.   DOI   ScienceOn
12 B. S. Yilbas, S. M. Nizam, J. Materials Processing Technology 105 (2000) 352.   DOI   ScienceOn
13 I. Nakamura, D. Matsui, M. Sasaki, I. Takano, Y. Sawada, Vacuum 74 (2004) 659.   DOI   ScienceOn
14 T.-H. Fang, S.-R. Jian, D.-S. Chuu, Applied Surface Science 228 (2004) 365.   DOI   ScienceOn
15 J. Takadoum, H. H. Bennani, Surf. Coat. Technol. 96 (1997) 272   DOI   ScienceOn
16 E. de Wit, B. Blanpain, L. Froyen, J. P. Celis, Wear 217 (1998) 215.   DOI   ScienceOn
17 S. Wilson, A. T. Alpas, Surf. Coat. Technol. 108-109 (1998) 369.   DOI   ScienceOn
18 P. Engel, G. Schwarz, G. K. Wolf, Surf. Coat. Technol. 98 (1998) 1002.   DOI   ScienceOn
19 Y. Yamada, K. Tanaka, K. Saito, Surf. Coat. Technol. 43/44 (1990) 618.   DOI   ScienceOn
20 W. K. Grant, C. Loomis, J. J. Moore, D. L. Olson, B. Mishra, A. J. Perry, Surf. Coat. Technol. 86-87 (1996) 788.   DOI   ScienceOn
21 A. Schroer, W. Ensinger, G. K. Wolf, Mater. Sci. Eng. A140 (1991) 625.
22 H. Schulz, E. Bergmann, Surf. Coat. Technol. 50 (1991) 53.   DOI   ScienceOn
23 J. Almer and M. Oden, American Vacuum Society A 18(1)(2000) 121.
24 A. Tanaka, Tribologist 46 (7)(2001) 558.
25 A. Okamoto, D. Yonekura, R. Murakami, Proc. of APCFS & ATEM '01(JSME No. 01-203), 20-22 (2001) 450.
26 M. N. Gardos, In: K. E. Spear and J. P. Dismukes. Synthetic Diamond: Emerging CVD Science and Technology, John Wiley & Sons, New York, 1994.
27 R. Murakami, Y. Matsuda, D. Yonekura, Tribo. Research and Design for Engng. Systems, Tribology Series 41 (2002) Elsevier 315.
28 H. Ronkainen, J. Likonen, J. Koskinen, S. Varjus, Int. Conf. On Metallurgical Coatings and Thin Films, ICMCTF'94, San Diego (1994) 16.
29 C. Donnet, J.-M. Martin, T. Le Mogne, M. Belin, Proc. Int. Tribology Conf., Yokohama, 1995.
30 S. J. Bull, P. R. Chalkner, C. Johnston, V. Moore, Surf. Coat. Technol. 68/69 (1994) 603.   DOI   ScienceOn
31 G. B. Hopple, S. H. Loewenthal, Surf. Coat. Technol. 68/69 (1993) 398.
32 H. Ronkainen, J. Likonen, J. Koskinen, Int. Conf. on Metallurgical Coatings and Thin Films, ICMCTF'92, San Diego (1992) 6.
33 Z. P. Huang, Y. Sun, T. Bell, Friction behavior of TiN, CrN and (TiAl)N coatings, Wear 173 (1994) 13.   DOI   ScienceOn
34 Y-Z Kim, Y-H Kim, C-M Yim, D. Hui, Int. Conf. on Composites Engng, ICCE 8, Spain (2001) 463.
35 P. Q. Wu, D. Drees, L. Stals, J. P. Celis, Surf. Coat. Technol. 113 (1999) 251.   DOI   ScienceOn
36 H. Chen, P. Q. Wu, C. Quaeyhaegens, K. W. Xu, L. M. Stals, J. W. He, J. P. Celis, Wear 253 (2002) 527.   DOI   ScienceOn
37 B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol. 97 (1997) 182.   DOI   ScienceOn
38 Y. L. Su, J. S. Lin, Wear 170 (1993) 45.   DOI   ScienceOn
39 R. Gahlin, M. Bromark, P. Hedenqvist, S. Hogmark, G. Hakansson, Surf. Coat. Technol. 76-77 (1995) 174.   DOI   ScienceOn