• 제목/요약/키워드: degradation ratio

검색결과 1,156건 처리시간 0.026초

EPR 케이블의 절연열화 특성의 평가 (Estimate of Insulated Degradation Propertied Of EPR cable)

  • 이성일;류성림;김귀열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.233-236
    • /
    • 2002
  • This paper describes the properties of between the residual voltage for ${\gamma}$-irradiated in electric power cable using in nuclear power generating station. As these properties related with ${\gamma}$-irradiation dose, it is suggested that these properties can be utilized as a index of irradiation degradation. From theory and experiment We found the residual voltage is not influenced by cable length. We found that residual voltage of basic composite and practical composite have not a difference an occasion be the same cable length. As the ratio of degradation increases, the residual voltage in the initial time range increases and the peak moves to the shorter time. Therefore, We can know the degree of radiation degradation from the position of the peak.

  • PDF

In vitro Degradation of Saikosaponin-a in Physiological Condition

  • Sung, Chung-Ki
    • 생약학회지
    • /
    • 제20권2호
    • /
    • pp.128-130
    • /
    • 1989
  • In vitro degradation of saikosaponin-a in physiological condition was conducted. Saikosaponin-a in 0.1 N-HCl of 25% 1,4-dioxane was incubated at $37^{\circ}$ and the products were analyzed and the time course of degradation was observed. Saikosaponin-a(Sa) was transformed to $saikosaponin-b_1(Sb_1)$ and saikosaponin-g(Sg) in the course of time. Sa was decreased drastically and not detected after 6 hours. $Sb_1$0 and Sg was increased with the time. After 6 hours the ratio of $Sb_1$ and Sg was about 4:1 and was maintained for 24 hours.

  • PDF

Application of Vegetation Indices for Forest Degradation Using Landsat TM Data

  • Kim, Choen;Joung, Khang-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.192-197
    • /
    • 1998
  • This paper demonstrates that it is feasible to evaluate forest degradation and to detect deforestation in the 8156$km^2$ study area affected by expand farming using vegetation indices derived from Landsat TM data. The NDVI-growing stock relation was applied on th Landsat TM data and a 3 second grid DEM, whose coverages could improve the assessment of forest degradation and also estimate the rate of change of forest cover area depending on elevation intervals. The strength of the relationship between the ratio of the greenness and brightness indices and forest degradation conditions would have been more interesting in the deforested areas which were converted to crop farming land.

  • PDF

EPR 케이블의 잔류전압에 미치는 방사선의 영향 (Effect of Radial Rays on Residual Voltage for EPR cable)

  • 이성일;류성림;김용추
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.518-521
    • /
    • 1999
  • This paper describes the properties of discharge current and the residual voltage for $^{60}$ C$_{0}$ -${\gamma}$ irradiated cables using in nuclear power generating station. As these properties related with $^{60}$ C$_{0}$ -${\gamma}$ -irradiatiation dose, it is suggested that these properties can be utilized as a index of irradiation degradation. As the ratio of degradation increases, the residual voltage in the initial time range increases and the peak moves to the shorter time. Therefore, I know the degree of radiation degradation from the position of the peak.

  • PDF

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

예열처리된 응회암 시험편의 물성 변화 (Changes of Material Properties of Pre-heated Tuff Specimens)

  • 윤용균;김사현
    • 터널과지하공간
    • /
    • 제23권3호
    • /
    • pp.212-218
    • /
    • 2013
  • 풍화된 응회암 시험편을 모사하기 위하여 최고 예열온도를 200, 400, 600($^{\circ}C$)로 한 예열시험편을 제작하였다. 각 예열시험편에 대한 실내시험을 통해 비중, 흡수율, 탄성파속도, 일축압축강도, 압열인장강도, 탄성계수, 포아송비, 슬레이크 내구성 지수를 측정하였다. 암석에 열을 가하는 경우 물성의 열화가 발생하는 것으로 나타났으나 예외적으로 슬레이크 내구성 지수는 별로 영향을 받지 않는 것으로 평가되었다. P-파 속도와 일축압축강도, 압열인장강도, 탄성계수, 흡수율 간에는 상당한 상관성이 있는 것으로 해석되었으며, P-파 속도를 알면 일축압축강도, 압열인장강도, 탄성계수, 흡수율을 추정할 수 있는 회귀식을 도출하였다.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

Synthesis of SnO2-Mn-C60 Nanocomposites and Their Photocatalytic Activity for Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.287-294
    • /
    • 2017
  • Nanocomposites based on $SnO_2-Mn$ were synthesized by the reaction of tin (II) chloride dihydrate and manganese (II) chloride tetrahydrate at a molar ratio of 10:1 in the presence of ammonium hydroxide at $80^{\circ}C$. The $SnO_2-Mn$ nanocomposites were stirred with fullerene [$C_{60}$] in a mass ratio of 2:1 in tetrahydrofuran to prepare $SnO_2-Mn-C_{60}$ nanocomposites; these nanocomposites were obtained upon heating the mixture of $SnO_2-Mn$ nanocomposites and fullerene [$C_{60}$] in an electric furnace at $700^{\circ}C$ for 2 h. The synthesized $SnO_2-Mn-C_{60}$ nanocomposites were confirmed through various characterization methods such as X-ray diffraction and scanning electron microscopy. The photocatalytic activities of the $SnO_2-Mn-C_{60}$ nanocomposites were demonstrated by the degradation of the organic dyes BG, MB, MO, and RhB under 254 nm irradiation and evaluated using UV-Vis spectrophotometry.