Browse > Article
http://dx.doi.org/10.7473/EC.2017.52.4.287

Synthesis of SnO2-Mn-C60 Nanocomposites and Their Photocatalytic Activity for Degradation of Organic Dyes  

Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
Publication Information
Elastomers and Composites / v.52, no.4, 2017 , pp. 287-294 More about this Journal
Abstract
Nanocomposites based on $SnO_2-Mn$ were synthesized by the reaction of tin (II) chloride dihydrate and manganese (II) chloride tetrahydrate at a molar ratio of 10:1 in the presence of ammonium hydroxide at $80^{\circ}C$. The $SnO_2-Mn$ nanocomposites were stirred with fullerene [$C_{60}$] in a mass ratio of 2:1 in tetrahydrofuran to prepare $SnO_2-Mn-C_{60}$ nanocomposites; these nanocomposites were obtained upon heating the mixture of $SnO_2-Mn$ nanocomposites and fullerene [$C_{60}$] in an electric furnace at $700^{\circ}C$ for 2 h. The synthesized $SnO_2-Mn-C_{60}$ nanocomposites were confirmed through various characterization methods such as X-ray diffraction and scanning electron microscopy. The photocatalytic activities of the $SnO_2-Mn-C_{60}$ nanocomposites were demonstrated by the degradation of the organic dyes BG, MB, MO, and RhB under 254 nm irradiation and evaluated using UV-Vis spectrophotometry.
Keywords
$SnO_2-Mn-C_{60}$ nanocomposites; photocatalytic activities; degradation of the organic dyes; UV-Vis spectrophotometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sharma, M. Varshney, S. Kumar, K. D. Verma, and R. Kumar, "Magnetic properties of Fe and Ni doped $SnO_2$ nanoparticles", Nanomater. Nanotechno., 1, 24 (2011).
2 G. A. Prinz, "Magnetoelectronics", Science, 282, 1660 (1998).   DOI
3 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtcheljanova, and D. M. Treger, "Spintronics: A Spin-Based Electronics Vision for the Future", Scinece, 294, 1488 (2001).   DOI
4 A. Azam, A. S. Ahmed, S. S. Habib, and A. H. Naqvi, "Effect of Mn doping on the structural and optical properties of $SnO_2$ nanoparticles", J. Alloy. Compd., 523, 83 (2012).   DOI
5 N. Salah, S. Habib, A. Azam, M. S. Ansari, and W. M. ALShawafi, "Formation of Mn-doped $SnO_2$ nanoparticles via the microwave technique: structural, optical and electrical properties", Nanomater. Nanotechno., DOI: 10.5772/62520 (2016).
6 B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, and H. D. Sun, "Fine structure of ultraviolet photoluminescence of tin oxide nanowires", J. Phys. Chem. C, 114, 3407 (2010).   DOI
7 S. Mehraj, M. S. Ansari, and Alimuddin, "Structural, electrical and magnetic properties of (Fe, Co) co-doped $SnO_2$ diluted magnetic semiconductor nanostructures", Physica E, 65, 84 (2015).   DOI
8 X. G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped $SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012).   DOI
9 R. S. Niranjan, Y. K. Hwang, D. K. Kim, S. H. Jhung, J. S. Chang, and I. S. Mulla, "Nanostructured tin oxide: Synthesis and gas-sensing properties", Mater. Chem. Phys., 92, 384 (2005).   DOI
10 S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, "Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system", Sol. Energ. Mat. Sol. C., 75, 481 (2003).   DOI
11 W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu, and J. H. Chu, "Far-infrared-ultraviolet dielectric function, lattice vibration, and photoluminescence properties of diluted magnetic semiconductor $Sn_{1-x}Mn_{x}O_{2}/c$-sapphire nanocrystalline films", J. Phys. Chem. C, 114, 8593 (2010).
12 A. Bouaine, N. Brihi, G. Schmerber, C. U. Bouillet, S. Colis, and A. Dinia, "Structural, optical, and magnetic properties of Co-doped $SnO_2$ powders synthesized by the co-precipitation technique", J. Phys. Chem. C, 111, 2924 (2007).   DOI
13 A. C. Bose, P. Thangadurai, and S. Ramasamy, "Grain size dependent electrical studies on nanocrystalline $SnO_2$", Mater. Chem. Phys., 95, 72 (2006).   DOI
14 B. Sathyaseelana, K. Senthilnathanb, T. Alagesanc, R. Jayaveld, and K. Sivakumara, "A study on structural and optical properties of Mn- and Co-doped $SnO_2$ nanocrystallites", Mater. Chem. Phys., 124, 1046 (2010).   DOI
15 H. Zhu, D. Yang, G. Yu, H. Zhang, and K. Yao, "A simple hydrothermal route for synthesizing $SnO_2$ quantum dots", Nanotechnology, 17, 2386 (2006).   DOI
16 Y. Liu, F. Yang, and X. Yang, "Size-controlled synthesis and characterization of quantum-size $SnO_2$ nanocrystallites by a solvothermal route", Colloid. Surface. A, 312, 219 (2008).   DOI
17 N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S. G. Leonardi, G. Neri, and C. Sekar, "Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-$SnO_2$ nanoparticles modified glassy carbon electrode", J. Electroanal. Chem., 770, 23 (2016).   DOI
18 G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped $SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012).   DOI
19 W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, "Composition and temperature dependence of electronic and optical properties in manganese doped tin dioxide Films on quartz substrates prepared by pulsed laser deposition", ACS Appl. Mater. Interfaces, 2, 2325 (2010).   DOI
20 X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications", Chem. Rev., 107, 2891 (2007).   DOI
21 V. K. Sharma, T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O'Shea, A. A. de la Cruz, T. Kaloudis, A. Hiskia, and D. D. Dionysiou, "Destruction of microcystins by conventional and advanced oxidation processes", Sep. Purif. Technol., 91, 3 (2012).   DOI
22 Z. He, W. Que, J. Chen, X. Yin, Y. He, and J. Ren, "Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped $TiO_2$ nanobelts prepared by solvothermal synthesis", ACS Appl. Mater. Interfaces, 4, 6816 (2012).   DOI
23 A. M. K. El-ghonemy, "Waste energy recovery in sea water reverse osmosis desalination plants, Part-1: review", Renew. Sust. Energ. Rev., 18, 6 (2013).   DOI
24 K. Anandan and V. Rajendran, "Influence of dopant concentrations (Mn = 1, 2 and 3 mol %) on the structural, magnetic and optical properties and photocatalytic activities of $SnO_2$ nanoparticles synthesized via the simple precipitation process", Superlattice. Microst., 85, 185 (2015).   DOI
25 K. Hara, T. Horiguchi, T. Khinoshita, K. Sayama, H. Sugihara, and H. Arakawa, "Highly efficient photon-to-electron conversion with mercurochromesensitized nanoporous oxide semiconductor solar cells", Sol. Energ. Mat. Sol. C., 64, 115 (2000).   DOI
26 J. L. Li, J. W. Ko, and W. B. Ko, "Preparation and characterization of $CeO_{2}-C_{60}$ nanocomposites and their application to photocatalytic degradation of organic dyes", Asian J. Chem., 28, 2020 (2016).   DOI
27 J. L. Li, J. W. Ko, and W. B. Ko, "Photocatalytic activities of carbon nanocapsules encircled by nickel nanoparticle composites to organic dyes degradation", J. Ceram. Process. Res., 16, 457 (2015).
28 N. S. Arul, D. Mangalaraj, and T. W. Kim, "Photocatalytic degradation mechanisms of $CeO_{2}/Tb_{2}O_{3}$ nanotubes", Appl. Surf. Sci., 349, 459 (2015).   DOI
29 S. Mehraj, M. S. Ansari, and Alimuddin, "Rutile-type Co doped $SnO_2$ diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior", Physica B, 430, 106 (2013).   DOI
30 M. Ishikawa, S. Kamiya, S. Yoshimoto, M. Suzuki, D. Kuwahara, N. Sasaki, and K. Miura, "Nanocomposite materials of alternately stacked $C_{60}$ monolayer and graphene", J. Nanomater., 2010, 891514 (2010).
31 S. K. Kansal, G. Kaur, and S. Singh, "Studies on the photocatalytic degradation of 2,3-dichlorophenol using different oxidants in aqueous solutions", React. Kinet. Catal. L., 98, 177 (2009).   DOI