• Title/Summary/Keyword: deformation theory

Search Result 1,798, Processing Time 0.029 seconds

DEFORMATION OF LOCALLY FREE SHEAVES AND HITCHIN PAIRS OVER NODAL CURVE

  • Sun, Hao
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.809-823
    • /
    • 2020
  • In this article, we study the deformation theory of locally free sheaves and Hitchin pairs over a nodal curve. As a special case, the infinitesimal deformation of these objects gives the tangent space of the corresponding moduli spaces, which can be used to calculate the dimension of the corresponding moduli space. The deformation theory of locally free sheaves and Hitchin pairs over a nodal curve can be interpreted as the deformation theory of generalized parabolic bundles and generalized parabolic Hitchin pairs over the normalization of the nodal curve, respectively. This interpretation is given by the correspondence between locally free sheaves over a nodal curve and generalized parabolic bundles over its normalization.

Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.509-524
    • /
    • 2017
  • In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.721-736
    • /
    • 2017
  • In this paper, free vibration characteristics of functionally graded (FG) nanobeams embedded on elastic medium are investigated based on third order shear deformation (Reddy) beam theory by presenting a Navier type solution for the first time. The material properties of FG nanobeam are assumed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on third order shear deformation beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The obtained results are presented for the vibration analysis of the FG nanobeams such as the influences of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

FE Analysis of Symmetric and Unsymmetric Laminated Plates by using 4-node Assumed Strain Plate Element based on Higher Order Shear Deformation Theory (고차전단변형이론에 기초한 4절점 가변형률 판 요소를 이용한 대칭 및 비대칭 적층 판의 유한요소해석)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.95-100
    • /
    • 2008
  • A 4-node assumed strain finite element based on higher order shear deformation theory is developed to investigate the behaviours of symmetric and unsymmetric laminated composite plates. The present element is based on Reddy's higher order shear deformation theory so that it can consider the parabolic distribution of shear deformation through plate thickness direction. In particular, assumed strain method is adopted to alleviate the shear locking phenomena inherited plate elements based on higher order shear deformation theory. The present finite element has seven degrees of freedom per node and denoted as HSA4. Numerical examples are carried out for symmetric and unsymmetric laminated composite plate with various thickness values. Numerical results are compared with reference solutions produced by other higher order shear deformation theories.

  • PDF

A Modified Domain Deformation Theory for Signal Classification (함수의 정의역 변형에 의한 신호간의 거리 측정 방법)

  • Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.342-349
    • /
    • 1999
  • The metric defined on the domain deformation space better measures the similarity between bounded and continuous signals for the purpose of classification via the metric distances between signals. In this paper, a modified domain deformation theory is introduced for one-dimensional signal classification. A new metric defined on a modified domain deformation for measuring the distance between signals is employed. By introducing a newly defined metric space via the newly defined Integra-Normalizer, the assumption that domain deformation is applicable only to continuous signals is removed such that any kind of integrable signal can be classified. The metric on the modified domain deformation has an advantage over the $L^2$ metric as well as the previously introduced domain deformation does.

  • PDF