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DEFORMATION OF LOCALLY FREE SHEAVES AND
HITCHIN PAIRS OVER NODAL CURVE

HaAo Sun

ABSTRACT. In this article, we study the deformation theory of locally
free sheaves and Hitchin pairs over a nodal curve. As a special case, the
infinitesimal deformation of these objects gives the tangent space of the
corresponding moduli spaces, which can be used to calculate the dimen-
sion of the corresponding moduli space. The deformation theory of locally
free sheaves and Hitchin pairs over a nodal curve can be interpreted as
the deformation theory of generalized parabolic bundles and generalized
parabolic Hitchin pairs over the normalization of the nodal curve, respec-
tively. This interpretation is given by the correspondence between locally
free sheaves over a nodal curve and generalized parabolic bundles over its
normalization.

1. Introduction

The moduli space of semistable locally free sheaves (coherent sheaves) and
Hitchin pairs over a smooth curve is studied by many mathematicians and is by
now well-understood. The moduli space of Hitchin pairs over a smooth curve
was first constructed by Hitchin in [7] and generalized by Nitsure in [8]. Later
on, Biswas and Ramanan [3] studied the infinitesimal deformation of Hitchin
pairs. This deformation theory provides a way to study the tangent space of
the moduli space of Hitchin pairs and the dimension of this moduli space.

In the last several decades, attention began to focus on the locally free
sheaves and Hitchin pairs over a nodal curve. Bhosle has shown in [1] that
there is a correspondence between locally free sheaves over a nodal curve and
generalized parabolic bundles over its normalization. Later on, Bhosle proved
that this correspondence can be extended to Hitchin pairs, more precisely, be-
tween Hitchin pairs over a nodal curve and generalized parabolic Hitchin pairs
over its normalization [2]. Under this correspondence, studying the deformation
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theory of Hitchin pairs over a nodal curve is equivalent to study the deforma-
tion theory of the corresponding generalized parabolic Hitchin pairs over its
normalization.

In this article, after providing necessary backgrounds in §2, we study the
deformation theory of locally free sheaves over a nodal curve X in §3. To
define the deformation theory, we consider the following short exact sequence

0—J—C —C—0,

where (C',m¢r) and (C,m¢) are two local Artin rings over a field k, and J is
an ideal such that mcJ = 0. Let X be a nodal curve over C and let X’ be an
extension of X flat over C’, i.e., X’ Xgpec ¢ Spec C' = X. Let € be a locally
free sheaf on X. We say that a locally free sheaf £ over X’ is a deformation of
E,if &' ®o,, Ox = E. We review the necessary definitions for the deformation
theory and pseudotorsor in §3. We describes the set of all deformations of £
over the extension X’ in terms of cohomology, which gives a way to calculate
the dimension of the moduli space of locally free sheaves over a nodal curve.

Theorem. 3.1 Let £ be a locally free sheaf over a nodal curve X.

(1) The set of deformations &' over X' is a pseudotorsor under the action
of the additive group H°(X,E* @ J @¢ Rg), where Rg is a sheaf over
X.

(2) If an extension of &' over X' exists locally on X, then there is an
obstruction ¢ € HY(X,E* ® J ®c Rg), whose vanishing is necessary
and sufficient for the global existence of £'. If such a deformation &'
over £ exists, then the set of all such deformations is a torsor under
HY(X,&*®J ®c Re).

In 84, we study the deformation theory of L-twisted Hitchin pairs (E, ®)
over a nodal curve X, where LL is a fixed line bundle over X. A deformation
(E',®") of (E,®) is a L/-twisted Hitchin pair over X’ such that its restriction
to X is (F,®), where L’ is the line bundle corresponding to L. We use two
approaches to study this deformation theory.

Biswas and Ramanan studied the infinitesimal deformation theory of Hitchin
pairs over smooth algebraic curves [3]. In our first approach, we generalize their
approach to study the deformation of LL-twisted Hitchin pairs over a nodal
curve. Note that in this approach, we generalize infinitesimal deformation
theory to deformation theory, Hitchin pairs to L-twisted Hitchin pairs and
smooth curves to nodal curves.

We briefly state the deformation theory we study in the first approach. Let
(E, ®) be an L-twisted Hitchin pair over a nodal curve X. Let p be the natural
action of End(E) on itself. The deformation complex C$ is defined as follows

0%:C% =End(E)® J <% ¢} = End(E) 9 L ® J,
where the map e(®) is given by

e(®)(s) = —p(s)(P).
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We generalize the proof of [3, Theorem 2.3] and have the following theorem.

Theorem. 4.1 The set of deformations of (E,®) is isomorphic to the first
hypercohomology group H*(CY), where C$ is the complex defined above.

The second approach is based on the correspondence between twisted Hitchin
pairs over a nodal curve and generalized parabolic Hitchin pairs over the cor-
responding normalization [2]. The second approach gives an alternative way
to understand the deformation theory of Hitchin pairs over a nodal curve from
the aspect of generalized parabolic Hitchin pairs. It is well-known that the
normalization of a nodal curve is smooth. Therefore we can apply Biswas
and Ramanan’s deformation theory [3] to the L-twisted generalized parabolic
Hitchin pair. Under the correspondence between L-twisted Hitchin pairs over
a nodal curve and L-twisted generalized parabolic Higgs bundles over its nor-
malization, the deformation theory of a generalized parabolic Hitchin pair is
exactly the deformation theory of the corresponding Hitchin pair over a nodal
curve. B

Let (E,F(E),®5) be a good generalized parabolic Hitchin pair over a
smooth curve X , which is considered as the normalization of a nodal curve
X. The deformation complex Cp .. ; in this case is defined as follows:

(Ch Cgar,J = ParEnd(E) @ J @) C’;MJ = ParEnd(E) @ L ® J.
Proposition. 4.3 The set of deformations of (E,F(E), &) is isomorphic to

Hl(CI:M’J), where Cp,. ; is the complex defined above.

As we explained above, the correspondence gives the isomorphism

HY(Cp,y,s) = HY(CS).

par,J

This is the second way to understand the deformation theory of Hitchin pairs
over a nodal curve.

2. Background
2.1. Principal L-twisted Higgs bundles over a nodal curve

Let X be an_irreducible nodal curve over C and X the normalization of X.
Denote by v : X — X the normalization map. If z € X is a node, it has two
preimages Z1,To in X under the map v.

Now we fix a line bundle L over X. Let G be a reductive linear algebraic
group. An L-twisted principal G-Higgs bundle over X is a pair (E, ®) consisting
of a principal G-bundle E over X and a section ® : X — ad(E) ® L, where
ad(F) = E xaq g is the adjoint representation of F and g is the Lie algebra
of G. Let p: G — GL(V) be a faithful representation. We say that the Higgs
bundle (E, ®) is stable (resp. semistable), if for any ®-invariant subbundle F,
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we have
deg ' x, V < deg £ x,V
rkF rkE
Consider the moduli problem (contravariant functor)

M(X,G,L) : (Sch/C)°® — Sets,
where Sch/C is the category of schemes over C and “op” means the opposite cat-
egory. Given S € Sch/C, /K/lv(X7 G,L)(S) is the set of flat families of semistable
LL-twisted principal G-Higgs bundles over the nodal curve X parametrized by
S. The authors in [5] proved that the moduli problem MV(X ,G,L) is repre-
sented by a projective scheme M (X, G, L), which is known as the moduli space
of semistable L-twisted principal G-Higgs bundles.

, (resp. <).

Theorem 2.1 (Theorem 1 in [5]). The moduli space M(X,G,L) is a projective
scheme which represents the moduli problem M(X,G,L).

In this paper, we are interested in the vector bundle, in other words, the
GL(n,C)-bundle. Instead of working on a principal GL(n, C)-bundle, we con-
sider the associated bundle E x, V' and the associated Higgs field ®. In the
rest of this paper, we use the same notation (F, ®) for the associated GL(n, C)-
Higgs bundle. We denote by M (X, n,d) the moduli space of semistable bundle
with rank n, degree d over X.

2.2. Generalized parabolic Hitchin pairs

We review the definition and some properties of the generalized parabolic
Hitchin pair in this subsection. Details can be found in [1,2].

Let Y be an irreducible non-singular algebraic curve defined over an alge-
braically closed field k. Let Ly be a fixed line bundle over Y. We fix s-many
disjoint Cartier divisors D; on Y, 1 <i <s. Let D =37 | D;. In this paper,
we assume that D; is the sum of two distinct points vy;1,vi2, 1 <7 < s. Let F
be a locally free sheaf over Y. Denote by n and d the rank and degree of E.

A generalized parabolic Ly -twisted Hitchin pair (GPH) of rank n and degree
don (Y, D) is a triple (E, F(E), ®), where

(1) E is alocally free sheaf on Y with rank n and degree d.

(2) F(E)= (F1(E),...,Fs(E)) is an s-tuple such that F;(E) C E ® Op,.

(3) @ : E —» E®Ly is a homomorphism preserving the filtration, i.e.,

O(Fi(E)) C Fi(E)®Ly.

Generally speaking, a (generalized) parabolic structure of a locally free sheaf
should consist of a filtration and its weights. In the above definition of GPH,
we only define the filtration (condition (2)). In fact, all of the weights are con-
sidered to be 1 in this paper. Thus we omit the condition about weights in the
definition of GPH. Condition (3) is exactly the definition of homomorphism
between (generalized) parabolic bundles (see [9]). Compared with the homo-
morphisms of holomorphic bundles, parabolic homomorphisms need to preserve
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the parabolic structures. More precisely, let ParEnd(FE) be the set of parabolic
homomorphisms of the generalized parabolic bundle £ and let Ep, = E®Op,.
Define Pp,(E, E) to be the subspace of End(Ep,, Ep,) consisting of maps pre-
serving the filtration over D;. We have

0 — ParEnd(E) — End(E) — End(Ep, Ep)/Pp(E, E) — 0,

where ED = @le EDi and PD(E, E) = @;?:1 PD,i (E, E)

A generalized parabolic bundle is a pair (E, F(E)) satisfying conditions (1)
and (2) (see [1]). Let f;(E) = dim F;(E) be the dimension of the filtration.
We define the weight wt(E), and parabolic degree par deg(FE) of the locally free
sheaf E as follows:

wt(F) = Z fi(E), pardeg(E)=d+ wt(E).
i=1

The parabolic slope pary is defined by

par deg(E)
= - )
A parabolic bundle E’ is a parabolic subbundle of E, if E' is a subbundle of E,
and its filtration F;(E’) satisfies F;(E') = Fi(E) N (E'® Op,). It is called a
O-invariant subbundle, if ®(E') C E' @ Ly.

A generalized parabolic bundle (E, F(E)) is stable (resp. semistable), if for
every proper parabolic subbundle E’ C E, we have

parp(E') < parp(E),  (resp. <) .

Denote by Myq, (Y, n,d) the moduli space of isomorphism classes of semistable
generalized parabolic bundles (E, F'(F)) with rank n, parabolic degree d over
the smooth curve Y. The existence of the moduli space M, (Y, n,d) is given
in [1, Theorem 1 and Theorem 3].

A GPH (E,F(E),®) is stable (resp. semistable), if for every proper ®-
invariant subbundle E/ C FE, we have

parp(E') < parp(E),  (resp. <) .
Denote by Ma-(Y,n,d,Ly) the moduli space of semistable Ly-twisted gen-
eralized parabolic Hitchin pairs (GPH) (E, F(E), ®) with rank n, parabolic
degree d over the smooth curve Y.

The existence of the moduli space M, (Y,n,d,Ly) of GPH is given by
Bhosle [2].

paru(E)

Theorem 2.2 (Theorem 4.8 in [2]). Let Y be a smooth algebraic curve of genus
g. We fix a line bundle Ly . Let D;, 1 <1 <'s, be the sum of two distinct points
inY. There exists a moduli space Mp.r(Y,n,d,Ly) of semistable Ly -twisted
GPH (E,F(E),®), where E is a holomorphic bundle of rank n, degree d with
the following filtration

E®0Dj D FJ(E) D 0,
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and ® : E — E® Ly is a homomorphism of parabolic bundles. The moduli
space Mpar(Y,n,d,Ly) is a projective scheme.

It is well known that studying generalized parabolic Hitchin pairs is closely
related to the study of Hitchin pairs overs a nodal curve [2]. Here is a brief
review of this relation. Let X be an integral projective nodal curve and X its
normalization. Let v : X — X be the normalization map. Let z1,...,2z5 be
the nodes of X. Let D; C X be the preimage of x; (as divisor). Clearly, D; is
the sum of two points. Let 6$L be the normalization of the local ring O,, at z;.
In this case, it is casy to check that dim(O,, /O,,) = 1. Given a line bundle L
on X, define L = v*L. Let (E, F(E),® 7) be a GPH over (X,D = i D).
We take

15(E) = rk(E).
A GPH (E,F(E), ® ) is good, if it satisfies the following conditions:
(1) the space F;(E) is an O, ,-sub-module of V(B ® Op,).
(2) we have v, (®) (v, (Fy(E))) C v.(Fi(E)) ®Lg,, 1 <i<s.
The good GPHs form a closed subscheme M92%(X | n, d, IL) of /\/lp,w()N(, n,d,L).

par
There is a one-to-one correspondence between good L-twisted GPHs over X
and L-twisted Hitchin pairs over the nodal curve X.

Proposition 2.3 (Proposition 2.8 in [2]). With respect to the above notations,
we have the following correspondences.
(1) An L-twisted good GPH (E, F(E), &) of rankn, degree d on X defines
an L-twisted Hitchin pair (E,®) of rank n and degree d on X.
(2) If (E,®) is an L-twisted Hitchin pair on X, then (E,®) determines
an L-twisted good GPH (E,F(E), ¢5) on X, where E = v*E and
b= 1D,

This correspondence induces a birational morphism between Mgg?d(X n,d, ]L)
and M(X,n,d,L).

Theorem 2.4 (Theorem 1.2 in [2]). There exists a birational morphism

M2 X n,d, L) — M(X,n,d,L)

par

from the moduli space of L-twisted semistable good GPH on X to the moduli
space of semistable L-twisted Hitchin pairs on X.

2.3. Infinitesimal deformation of Hitchin pairs over nonsingular al-
gebraic curve

Let (E, ®) be a Ly-twisted Hitchin pair over a nonsingular projective curve
Y. Aninfinitesimal deformation of the Hitchin pair (E, ®) is a pair (E’, ®') over
Y x Spec C[e]/(¢?) with an isomorphism of the restriction to Y x m, where m
is the closed point of Spec C[e]/(¢2). Now we consider the Ly -twisted Hitchin
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pair Ele] = E x Spec Cle]/(¢?). The automorphisms of E[e] which induce
identity over the closed point is End(E). Therefore for a section s of End(FE),
the corresponding automorphism of E[e] is denoted by 1 4 se. Moreover, if
v+ we is a section of (End(E) ® Ly )[e], we have

p(1 4+ se)(v+ we) = v+ we + p(s)(v)e,

where p is the natural action of End(E) on E. The deformation complex C*
is defined as follows:

C*: C° = End(E) 224 ¢! = End(E) ® Ly,

where the map e(®) is given by

e(®)(s) = —p(s)(®).

The authors in [3] used this complex to calculate the space of infinitesimal
deformations of the Hitchin pair (E, ®) over Y.

Theorem 2.5 (Theorem 2.3 in [3]). The space of infinitesimal deformations
of a given Ly -twisted Hitchin pair (E,®) over Y is isomorphic to the first
hypercohomology group H(C*®) of the complex C*.

3. Deformation of locally free sheaves over nodal curve

In this section, we want to study the (infinitesimal) deformation theory of
locally free sheaves over a nodal curve X, which will give us a way to calculate
the tangent space of M(X,n,d). We first review the definition of deformation
theory from [6, Chapter 6].

Let C’, C be two local Artin rings over a field k with maximal ideals m¢:,
me respectively satisfying the following exact sequence

(1) 0—J—C —C—0,

where J is an ideal such that mg/JJ = 0. Thus we can consider J as a k-vector
space, where k is the residue field of C' with characteristic zero.

Let X be a scheme over C' and let X’ be an extension of X flat over C’. In
other words, X’ is a flat family over Spec C’ and there is a closed embedding
X — X' such that X' Xgpec ¢ Spec C' = X. We fix a locally free sheaf £ over
X. In this section, we will consider the deformation theory over the sequence
(1). We say that a locally free sheaf & over X’ is a deformation of &, if
&' ®o,, Ox = &. If we work on the following exact sequence

(2) 0— () 2k — k[e]/(e®) — k — 0,

where k is a field with character 0, we say that £’ is an infinitesimal deformation
of £, _

Let X be the normalization of X. Denote by m : X — X the natural
projection map. We first work on this problem in the affine case. Let X =
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Spec A be an affine space over Spec C' and X = Spec A its normalization. We
have a short exact sequence

(3) 0—A—A—R—0,

where R is an A-module. Let E be a fixed A-module. We have the following
exact sequence

4) 0— E—m.E — Rp — 0,

where £ = m*E = E ®a A and Rg = E ®4 R. Note that E is exactly the
bundle corresponding to E in Proposition 2.3. The parabolic structure comes
from Rp. More precisely, we have

0— E—sm.FE —>m, % — 0,
— Fj(E)
where the sum runs over all nodes z; of X and D; is the preimage of the node
x; in X.
We fix an extension X’ = Spec A’ of X. Exact sequences (1) and (3) then
provide the following 3 x 3 commutative diagram:

0 0 0

1 Lol

0 —JRcA— A — A —0
! U

0*>J®cg*>g/*>g*>0

l Lol

00— J®R—R — R —0

| 1ol

0 0 0

where A’ = ﬁ@A A’. Given an A-module E, let E' =F Ra A, We want
to classify deformations E’ of E over A’. In other words, we want to find all
A'-modules E’ such that E’ ®z A" = E’ and E' satisfies the following 3 x 3
commutative diagram:

0 0 0
1 ! 1
0 — JocE E E—0

! l b

0*>J®C7T*E*>W*E'L>W*E*>O

1 ! 1

0*>J®CRE*>RE*>RE*>O

! ! !

0 0 0
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Before we state the result, we want to give the definition about torsor and
pseudotorsor [6]. Let G be a group acting on a set S. We say that S is a torsor
under the action of G, if it satisfies the following two conditions:

(1) For every s € S, the induced mapping g — ¢(s) is a bijective map from
Gto S,
(2) the set S is nonempty.

We say that S is a pseudotorsor, if it satisfies condition (1) above.

Theorem 3.1. With the same notation as above, let £ be a locally free sheaf
over a nodal curve X.

(1) The set of deformations &' of € over X' is a pseudotorsor under the
action of the additive group H°(X,E* @ J ®c Rg).

(2) If an extension &' of € over X' exists locally on X, then there is an
obstruction ¢ € HY(X,E* @ J ®c Rg), whose vanishing is necessary
and sufficient for the global existence of £'. If such a deformation &’
of £ exists, then the set of all such deformations is a torsor under
H(X,&* ® J ®c Rg).

Proof. We first consider this problem in the affine case and we will use the
second 3 x 3 commutative diagram for E. Let E{ and E} be two possible
choices for E’. Let 21 € Ef and z3 € EY be two elements with the same image
x € Rg. Note that the choice of x1, x5 is not unique but determined only up
to some element in J ®c E. The element x1 — x5 is also a Well-deﬁneg element
in m,E’. Note that this also gives a well-defined element in J®cmE, and we
use the same notation x1 — x5 for the element in J ®¢ 7. E. Denote by w(z)
the image of x1 — x5 in J®c RE. Thus x € F gives us a well-defined element in
J®c RE. Denote by w : E — J®¢ RE the map sending x to the corresponding
element in J ®c Rg. It is easy to check that this map w is A-linear. Therefore
we get a map w € Homa(F,J ®c Rg).

Now given E] and a map w € Homu(E, J®c Rg), we define another module
E}, fitting into the 3 x 3 diagram. Note that E’ and R, determine each other
uniquely. Therefore it is equivalent to construct (R;)s for Ef. Let (R)2
be the set of x4 € ’/T*E/ such that there exists an element x € E such that
j(x) = p(xq), and for any lifting z1 of x to Ef, the image of o — 21 € J®¢ RE
equals w(x). Tt is easy to check that F) is a well-defined element fitting into
the diagram.

Finally, we have to check that this action is a group action. Let E{, ES, E%
be three choices of E’. The map w; is defined by E}, F), ws is defined by
E}, E% and ws is defined by Ef, E, then ws = w; + ws. Thus the operation
w(E}) = Ej is a group action with the additive group Homa(F, J ®c Rg).
This additive group Homa (E, J ®c Rg) is exactly HY(X,E* @ J @c Re). It is
easy to check that if the pseudotorsor exists locally in the affine chart, it can
be globalized naturally. This finishes the proof of part (1) of the theorem.
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To prove (2), we assume that the deformation £’ of £ exists locally. In other
words, there exists an open affine covering X = (X;);ez of X, where Z is the
index set, such that on each local chart X;, there exists a deformation &/ of
& = &|x,. Let X] := X; Xgpec ¢ Spec C’ be the local chart of X’. We first focus
on the intersection X/, = X/ N XJ. There are two possible extensions & and
&} of &;; on the intersection X;; = X/ N X7}. By part (1), these two extensions
define an element w;; € H°(X;;,£* ® J ®c Rg). On the intersection Xl =
X;NX;NXj of three affine open sets, there are three deformations &/, £ and &;.
The differences define the elements w;;, @i, and wj in H(X;;,£* @ J ®c Re)
such that w;, = w;; + w;i. Clearly, (w;;) is a 1-cocycle for the covering X
and the sheaf £*®@ J ®c Rg. If (€/°);cz is another choice of local deformations.
Similarly, this choice defines w(; € H°(X;;,* ® J ®¢ Re) such that (wy;) is
a 1-cocycle. Also note that these two deformations &/ and £/° give us a well
defined element a; € H°(X;,£* ® J ®c Re) such that a; — = Wi — w?j.
Therefore the cohomology class & = («;) is well-defined. This cohomology class
a is the obstruction to the existence of a global deformation &’ of £ over X'. It
is easy to check that a global deformation £’ exists if and only if & = 0. This

finishes the proof of part (2). O

Example 3.2. In this example, we consider the infinitesimal deformation of a
rank n, degree 0 locally free sheaf F on a nodal curve X over C with a single
node. Let J = (¢) 2 C, ¢’ = C[¢]/(¢?) and C = C. We use the exact sequence
(2). In this case, we have

0 0 0
1 ! 1
E E E
1 ! 1

0 — m.E — 1B — 1m.E —0

! ! !
0 — Rg — Ry — Rgp — 0

! ! !

0 0 0

where Ry = C. (If X has s nodes z1,...,x,, then Rg =) ;| C;,.) Thus, if
HY(X,E* ® J ®@c Re) vanishes, we have HY(X,£* ® J ®c Re) = HY(X,&*).
It is easy to check that dim H°(X,€*) = n?(gx — 1) + 1. This number is the
dimension of the tangent space of the moduli space M(X,n,0) at the smooth
point E, more precisely, the dimension of M (X, n,0).

Another interpretation of dim H°(X,E*) = n?(gx — 1) + 1 comes from the
moduli space of generalized parabolic bundle ./\/lpm,()N( ,n,0), where X is a nor-

malization of X. By Theorem 1 in [1], we know the dimension of M4, (X, n,0)
is n? (g -1 +1+ n?, where the term n? is the dimension of the flag variety

for the corresponding parabolic structure of E. This flag variety is exactly
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the Grassmanian Gr(2n,n), i.e., n-dimensional subspace of a 2n-dimensional
vector space. Note that gx = g + 1. Thus we have

dim My, (X,1,0) = n%(g5 — 1) + 14+ n% = n?(gx — 1) + 1 = dim M(X, n,0).

In fact, the above equality is not a coincidence. Proposition 2.3 implies an
one-to-one correspondence between generalized parabolic bundles and bundles
over nodal curve. Thus the dimension of the moduli spaces M, (X,n,0) and
M(X,n,0) are the same as expected.

4. Deformation of Hitchin pairs over a nodal curve

In this section, we study the deformation of Hitchin pairs over a nodal curve
X. We use two approaches to study this problem: the first one is to generalize
Biswas and Ramanan’s approach [3] to study the deformation of L-twisted
Hitchin pairs over a nodal curve; the second one is to use the correspondence
between Hitchin pairs over a nodal curve and generalized parabolic Hitchin
pairs over its normalization to study this problem. The second approach means
that studying the deformation of Hitchin pairs over a nodal curve is equivalent
to study the deformation of the corresponding GPH over its normalization.

We want to remind the reader that Yokogawa studied the infinitesimal defor-
mation theory for parabolic bundles [9]. Together with Biswas and Ramanan’s
work, the deformation theory of parabolic Higgs bundles is studied in a similar
way in [4]. Note that the definition of the parabolic bundle is different from that
of the generalized parabolic bundle. The usual parabolic structure depends on
a fixed reduced effective divisor D and involves a filtration over each point x
in the divisor D, while the generalized parabolic structure defines a filtration
over each divisor D;, 1 < ¢ < s, which can be a single point or a collection
of points. In the case of a nodal curve X, the divisor D; is the preimage of
the node z; in the normalization X, which is the sum of two points. Although
the definition of the parabolic structure is slightly different, the approach to
calculate deformations can be applied to the generalized parabolic Hitchin pair.

4.1. First approach

With the same notation as in §3.1, let C’, C be two local Artin rings satis-
fying the following exact sequence

0—J—C —C—0.

We can consider J as a k-vector space, where k is the residue field of C'. Let
X be a nodal curve over C' and let X’ be an extension of X flat over C’. Note
that

X' Xgpee ¢ Spec C = X.

We fix a line bundle L. over X together with the corresponding line bundle L
over X'. Let (E, ®) be a L-twisted Hitchin pair over X. A deformation (E’', ')
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of (E,®) is a L'-twisted Hitchin pair over X’ such that its restriction to X is
(E,®). Note that ® can be considered as a section of End(E) ® L.

Let us consider a special case. Let ¢ = C[J] := C @ J. The algebra
structure of C’ is given as follows:

(m,n)(p,q) = (mn,mq + np).
Clearly, J is a nilpotent ideal in C’. With the same notation as above, let E’ =
E x Spec k[J]. For a section s of End(E)®J, the corresponding automorphism
of E’ is denoted by 1+ s. Moreover, if v + w is a section of End(E’) @ L', we
have

p(1+5) (v +w) = v+ w+ pls)(v),
where p is the natural action of End(FE) on itself. The deformation complex
(5 is defined as follows:

0%:C% =End(E)® J “% ¢} = End(E) 9 L @ J,

where the map e(®) is given by

e(®)(s) = —p(s)(P).

Theorem 4.1. Let (E,®) be a L-twisted Hitchin pair over a nodal curve X.
The set of deformations of (E,®) is isomorphic to H'(CY), where C% is the
complex defined above.

Proof. The proof of this theorem is similar to that of Theorem 2.3 in [3]. We
only give the construction of the deformation of (F,®) from an element in
H!(C$).

Let U = {U; = Spec(A;)}icr be an open covering of X by affine schemes,
where I is the index set. Set

End(E)® J|y, = C?, End(E)®L® J|y, =C},

where Cf and O} are Aimodules. Similarly, modules C; (resp. Cj;) are
restrictions of CY (resp. C}) to Ui; = Ui (U;. We consider the following Cech
resolution of C'§:

0 0
1 " 1
0 oy = o 0

14 14
0— >C? “®) SOl — 0
H Jdi
0— >0 @) Chi — 0

148 Ldb
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The first hypercohomology group H'(C%) can be calculated from the above
diagram. Let Z be the set of pairs (s;;,t;), where s;; € C’ZQJ- and t; € C}
satisfying the following conditions:

(1) sij + sjx = sik as elements of C’?jk.

(2) ti —t; = e(®)(s4;) as elements of Cy;.

Let B be the subset of Z consisting of elements (s;—s;, e(®)(s;)), where s; € CP.
The hypercohomology group H'(C$) is Z/B.

Given an element (s;;,t;) € Z, we shall construct a L-twisted Hitchin pair
(E',®") on X’ such that F'|x 2 E and ®'|x = ®.

For each U;[J], there is a natural projection 7 : U;[J] — U;. Take the sheaf
E! = n*(E|y,). By the first condition of Z, we can identify the restrictions
of E} and E’ to Ujj[J] by the isomorphism 1+ s;; of Ej;. Therefore we get a
well-defined quasi-coherent sheaf £’ on X'.

On each affine set U;[J], we have ®; +t; : End(E}) ® L. It is easy to check

e(Pi +1:)(1 + s55) = B + 15

by the second condition of Z. Therefore {®; +t;} can be glued together to give
a global homomorphism @' : E/ — E’ @ . In conclusion, for each element in
Z, we can construct a deformation of (E, ®).

Let (s;5,t;) be an element in B. In other words, s;; = s; — s; and t; =
e(®)(s;). The identification of ] = E’ on U;;[J] is given by the isomorphism

1+Sij:1+(8i—8j).

Consider the following diagram:

1+s;
E/ N -y
ij B i

J/l“rSij lld

1+s;,
! J /
Eij — Eij

The commutativity of the above diagram implies that E’ is trivial. Similarly,
we have

e(®; +t;)(1 +55) = ;.

Therefore the associated Hitchin pair (E’, ®’) is isomorphic to (7*E,7*®).
The above construction gives us a well-defined map from H!(C9) to the set of
deformations of (E, ®).

Note that given a deformation (E’, ®') of (F,®), we can define an element
(sij,t;) by restricting to the open sets U;[J] for i« € I. It is easy to check that
the element (s;;,¢;) is a well-defined element in H'(C$). Thus we construct a
map from the set of deformations of (E,®) to H!(C$).

It is easy to check that the above two maps are inverse to each other. Thus
the set of deformations of (E, ®) is isomorphic to H'(C$). O
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Remark 4.2. The above proof works for either a singular (nodal) curve or a
smooth curve. It can be also applied to a general scheme X. More generally,
the above proof can be generalized for an algebraic space or a Deligne-Mumford
stack. Note that if we are working on an algebraic space or a Deligne-Mumford
stack, the covering U = {U; = Spec(4;)} that we took in the proof should be
an étale covering. Thus in the case of algebraic space or stack, the hypercoho-
mology group we calculate is in fact the étale cohomology.

4.2. Second approach

By Theorem 2.4, we have a birational morphism between the moduli space
M(X,n,d,L) and the moduli space Mggﬁd(f,n,d, IE) of good GPH, which is
induced by the correspondence in Proposition 2.3. Thus studying the deforma-
tion theory of L-twisted Hitchin pairs (F, ®) over a nodal curve X is equiva-
lent to study the deformation theory of the corresponding L-twisted good GPH
(E,F(E),®3) over X.

Let ParEnd(E) be the set of parabolic homomorphisms of the generalized
parabolic bundle E. As we discussed in §2.2, we have the following exact
sequence

0 — ParEnd(E) — End(E) — End(Ep, Ep)/Pp(E, E) — 0.
With respect to the notation in §4.1, the deformation complex Cp,, ; in the
parabolic case is defined as follows:
~ e(P = ~ ~
Coy i OO = ParEnd(B) @ ~22 €1 ParEnd(B) © L © J.

Proposition 4.3. Let (E,F(E),‘I)E) be a good generalized parabolic Hitchin
pair over X. The set of deformations of (E,F(E),®5) is isomorphic to the

hypercohomology group Hl(C’;m,J), where Cp, ; is the complex defined above.

The proof of this proposition is similar to that of Theorem 4.1. The only
difference is that, in the parabolic case, we have to work on the parabolic
endomorphisms ParEnd(E) of F instead of the endomorphisms End(FE) of E.

Now we will explain why the set of deformations H'(CS,,. ;) is isomorphic

to the set of deformations Hl(Cj(E)) The set of parabolic homomorphisms
ParEnd(E) is exactly the homomorphisms End(E) over the nodal curve, which
is implied in [1, Section 1, 4]. Therefore the following two complexes are iso-
morphic

£ €0, =ParBnd(B) ® J <% CL, = ParFnd(E) @ L ® J,

c, ;

ar,J

0%:C% =End(E) @ J % ¢ = End(E) 9 L ® J.

The isomorphism of complexes gives us the isomorphism of the hypercohomol-
ogy groups
HY(Cpap, s (E)) = H'(C3(E)).
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In conclusion, the set of deformations H!(C'$(E)) of a locally free sheaf E over

a nodal curve X can be calculated by the set of deformations H*( z:M’J(E))

of the corresponding good generalized parabolic Hitchin pair (E,F(E),(I) )
This is the second approach to calculate H'(C%(E)).
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