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A Modified Domain Deformation Theory for Signal Classification

& B %
(Sung-Soo Kim)

Abstract - The metric defined on the domain deformation space better measures the similarity between bounded and

continuous signals for the purpose of classification via the metric distances between signals. In this paper, a modified

domain deformation theory is introduced for one-dimensional signal classification. A new metric defined on a modified

domain deformation for measuring the distance between signals is employed. By introducing a newly defined metric

space via the newly defined Integra—Normalizer, the assumption that domain deformation is applicable only to continuous

signals 1s removed such that

any kind of integrable signal can be classified. The metric on the modified domain

deformation has an advantage over the L° metric as well as the previously introduced domain deformation does.

Key Words : Domain deformation, Similarity measurement, Signal classification, Homeomorphism.

1. Introduction

When we measure the similarity between the
waveforms, we can use many different methods for each
different area of application. In most cases, we use the
metric in L? which measures the least square error
(LSE) between two signals as a distance. A function is a
mapping between two spaces called a domain and a
range. The domain deformation method defines a metric
in order to measure the distance between functions using
the relation that a domain can be mapped to another
domain so that the values of range of one function
matches the values of another range as shown in Fig. 1.
Simply, the domain deformation is a mapping from one
domain to another through a homeomorphic relation.

The motivation to study the Domain Deformation
Theory (DDT)[1] in the metric spaces involved in the
compared functions is that the DDT performs better in
measuring the shape similarity between two functions.
There are some cases in which the measurement via the
metric L* does not agree with an intuitive understanding
of it. The DDT results in a more intuitive description of

the relation between two signals than the traditional

. . 2
metrics in L°.
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Fig. 1 Relation Between Spaces of Two Functions

Suppose that there are two 1-D signals whose shapes
are to be compared in a metric space X, which is the
space of real-valued functions of bounded variation. A
case is studied and a metric is proposed for the method
of shape similarity measurement between signals in [1,2]
with a more intuitive understanding.

Let signals /(). A(H and g(H be the functions of
bounded variation on the unit interval {0, 1] for purposes
of comparison. The functions are the elements of X

which are shown in Fig. 2 such as:

_ {0.125, if tela, B,
g0 = {0.0, otherwise

_ (1.0, if +=[0.5,0.511,
h = {0.0, otherwise

_ (1.0, if t=[0.52,0.53],
A8 = {0.0, otherwise
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Fig. 2 Counter Example Showing Weakness of L® Metric

For example, let  E(A(9), (1) def f(fx(t)*f-_)(t))z for

t € [0,1] and the functions f;, f» inX. For the
functions f,. /. g the metric distance in L*-sense
E(AD, g(0) < B(£(H, g(H) when
B=0.8: E(/ (D, g(H)=0.01859 and Z(/, (D), f-(5))=0.02.

becomes =0 and
This means that £ is closer to g than to f» in the L’
sense. This result does not agree with our intuitive
understanding that f; is closer to f» than to g
2=0.1 and £=20.91 in Fig. 2
(A, (D) is less than  Z(g(d, /,(8)) which agrees

where

However, when

understanding
E(A(D, g(H) = 0.020150 and E(A(H, £(H) = 0.02. This

DDT is introduced in [2] so that it removes the defect of

with our intuitive

L* metric in respect to our intuitive understanding.
However, there is a constraint to the functions in the
DDT. The compared functions must be continuous In
order to hold the homeomorphism between their domains
which yields a limit to the applicability of the DDT. The
DDT emplovs the homeomorphism by removing the
“redundant” s’s from S the domain deformation space. In
this research, the Modified Domain Deformation Theory
(MDDT) is developed by removing the constraint and the
“redundant” elements from the spaces involved in the
DDT. so that the mapping becomes bijection. In the
MDDT, deformation is applied to the domain of the
operator defined as the Integra-Normalizer, not to the
domain of function to be compared initially. The first
advantage of the MDDT is the relaxation of the
constraints, so that it becomes possible to measure
distance between all integrable functions. The second
advantage is that bijection between domain spaces can be
obtained without excluding the “redundant.” Thus, the
homeomorphism in the domain deformation function is

concisely defined. In addition to these advantages, a
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metric is introduced in the MDDT through which the
distance measurement becomes more compact than the

metric defined in [11.

2. Domain Deformation Theory (DDT)

The domain deformation theory (DDT) in [2] is defined
based on the assumption that X is the space of
real-valued functions of bounded variation, defined in the

unit interval I, satisfving the following:

1. At every point £ in the interval [0, 1], the left- and
right-hand limits exist.

VieX, A)=RAt+07) or At) = At+07).

3. The values taken by f at 0 and 1 are arbitrary.

£

For better understanding, the definition of the bounded

variation is given below:

Definition 1 (Bounded Variation)
A function in [ is said to be of bounded variation on 7

if its total variation Var(w) on [ is finite, where
Varw) = sup il|w(t,)—w(t,~_1)|. the supremum being
“~

taken over all partitions 0= £, < <{--<¢t, =1 of [

ne N is arbitrary.

g(s)
A
A
(x,y),,’ .
B -}
L 1Y)
s(t 7 o

f(t)

Fig. 3 Domain Deformation Shown in the Product Domain

of fiand g

For the functions £, f.. and g in X, the function s is
domain
g Ll ) L (490,

order-preserving homeomorphism of the unit interval 1

defined as the deformation by

where s(# is an

onto itself. Fig. 3 describes pictorially  the structure of
deformation. The functions g and f; are to be visualized

normal to the plane of Fig. 3. The horizontal axis (¢
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-axis) in Fig. 3 is the domain of f; and the vertical axis

(the x-axis) is the domain of g In order to present the

domain deformation method, the spaces S and X are
defined in [2].

Definition 2 Let S be the space of all order-preserving

homeomorphisms of the unit interval I to itself.

We define

homeomorphism in the unit interval 7 onto itself. The

S as the space of all order-preserving

function s€ S is a continuous, strictly increasing function
in the product domain IxI The pair (S, ) is a group

and the space S is convex as a set [1, 2].

Definition 3 Let X be the space of all real functions of
bounded variations defined in the unit interval 7 Let

fe X. A set of functions can be defined X; which is

obtained from f through order preserving, homeomorphic,
domain deformation in X:

X;={gf=g-s, for somess S }.

As is mentioned in [2], the mapping from S to X, is

onto, the mapping s to f - s~ !, but not one-to-one in
general. When A1) equals to 1, X, is the singleton

{f}since 1-s7'=1 for all sin S as shown in [2]
This singleton occurs since the function f is not a
strictly increasing function. In the DDT, by removing the
“redundant” s’s from S, except the identity domain
deformation s= ¢, the mapping becomes one-to—one. The
AD=1 is a special case of constant value functions. In
[2], for each of the corresponding constant subintervals
in f and g, by connecting left bottom and right upper
corner of the kernel, the uniqueness of s is kept. Then,
fin X can be compared with g’s in X, only through
the domain deformation s. An interesting question is
whether the DDT can be used for measuring distance
between two functions when the s is not a strictly
increasing function. A good example illustrating that the
s is not a strictly increasing function is when f is an
absolutely increasing function and g has a constant
magnitude subinterval in I Obviously, the domain
deformation function does not hold the homeomorphism.
Another case in which the DDT does not hold
homeomorphism is when f in X is a discontinuous
function which is strictly monotonic except for the

discontinuous point. Suppose that f is a discontinuous

function at a point p in I with Ap+0~) which is not
Ap+0*). Can the s which is an

order-preserving, homeomorphic, domain deformation for

equal to

any possible function in X be found? Only if s is a
(0,0) and (1,1) can s be

found. In this case, s maps f to itself, not to any others.

straight line connecting

There exists one-to-one and onto between X, and S by
mapping the s and f = g such that X, = {f}.
There is no way to find any functions that belong to X J;

through this s, except f itself. Conversely, if a function
g for the f in X is chosen first, there is no s that
holds the properties. Using the definition above, the
distance between f and the functions in X, can be
measured through the domain deformation, s.

The question is whether the domain deformation s
with the properties of order-preserving homeomorphism
for any function that is not an element of X can be
found. Since X, is a subset of X, there are some cases
where the domain deformation function cannot be found.
Thus, some modification of the theory is unavoidable.

3. Constraints of the DDT

In the Lemma 25, 2.6, and the Theorem 2.7, Corollary
2.8, and Theorem 210 in [1], the domain deformation is
built to be a strictly increasing function with
homeomorphism in/xI In this procedure in [1], all
possible cases of creating singletons are eliminated, so
that not all the functions in X, the space of real-valued
function with bounded variation, can be compared to each
other. Thus, when two functions in X are compared,
the domain deformation s does not hold the
homeomorphism,

For instance, when f has a number of constant-valued
subintervals and g(#)=1¢ is a strictly monotonic function,
there are singletons in domain deformation. In this case,
all the subintervals of f are mapped to singletons so that
the function s is not an absolutely increasing function. If
we remove the singletons in the deformation function, it
1S no longer homeomorphic. The general definition of

homeomorphism is as follows:

Definition 4 If fis a 1—1 function from a metric space
X| onto a metric space X, and if f and F ! are
continuous, f is a homeomorphism from X, onto X,

where X, and X, are the subsets of X.



A simple example where homeomorphism of the domain
deformation for the functions in X does not hold is
shown in Fig. 4. The example is an element of the X
space, a real-valued bounded function with bounded
variation over the interval [ onto itself. If the example
function is noted as f and the function g€ X g(H ==t
where t{€] then the deformation function becomes the
function as shown in Fig. 5. The jumping element of s
has a singleton in the domain f which matches to
several elements of the domain of the function g(#). This
clearly contradicts the homeomorphism of s, the domain
deformation function. If the element of the domain of fis
excluded, then s is no longer a continuous function and
this exclusion will not satisfy the homeomorphism.
Therefore. the Domain Deformation Theory as presented
in [2], needs modification to satisfy the order-preserving

homeomorphism of the deformation function.

0 1.0
Fig. 4 A Counter Example of the DDT

.-[ " singleton area

R QR —

N

0 1.0

Fig. 5 Domain Deformation of the Counter Example
4. Modified Domain Deformation Theory

This section defines the operator Integra-Normalizer (IN)
and a transformed space through the IN, so that the
satisfied.  The
procedures and theory involved in the IN are defined as

order-preserving  homeomorphism is

geol Mol Mglol o|8r AlEio) Mol AF W
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the Modified Domain Deformation Theory (MDDT) with
S the same space presented in the previous section and

with the integrable function defined in [4].

Theorem 1 [Integrable Function]
A function is integrable if and only if it can be expanded
functions.  Moreover, if

into a sertes of step

f =fi+fo+--, where the f, are step functions and =

means an approximation, then ff= ff1+ ff2+--~.
From Theorem 1, a slightly modified function is defined

in Definition 5.

Definition 5

Positive-Valued Function] Suppose that there are a

[Approximation of Function into a
number of intervals on which values of f,g are zero.

Then, without loss of generality, a value & can be

defined as e= % where & = the infimum of the £, at

which non-zero value begins, and NeR is a large
enough value. This creates a slightly increasing valued
function over all the intervals whose magnitudes are all
zeros, except the origin of domain. Therefore, if ¢ is
added to the values of zero in the range, the functions
that have all positive values except the origin are
obtained.

“singleton area

Fig. 6 Singleton in the Domain Deformation Function
Obtained from the IN

Mathematically, the above definition can be described as:

_ [ R, it A8 #0,
ho = s, iAH=0

where N is large enough, _51\7 *¢ is smaller than ¢ for ail

tel Thus, if the function keX becomes a positive
t=0.0 where te],

proposition,  the nth

integrable function except at the

then using the Degree
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defined.  Without

Definition 5, the s domain deformation function can not

Integra-Normalizer is employing

always be obtained as shown in the following Fig. 6.

Definition 6 [The nth Degree Integra-Normalizer]

With f as an integrable function over the unit interval 1,
an increasing function can be generated by an #n-times
integration over I with 0 <AH< 1. Let f and g be
integrable functions with variables ¢ in the unit interval
I Let

adef T 1" "
ordel TLT7 podel 0t

so that, for n==#k f*=I*$ and 7¥=TI*(g become
continuous strictly increasing functions over the I with

F¥1)=1. Then, there
deformation function that is an absolutely increasing

exists a unique domain
function as the JIxI mapping connecting the origin to

(1,1).

Theorem 2

Let H be the space of all real integrable positive
functions except at zero defined in the unit interval I
Then the functions f* g*<H obtained through the kth
Degree Integra-Normalizer are absolutely increasing
functions, and there exists a unique solution s which
satisfies the following: A*=f*-5, s €S where S is the
space of all order-preserving homeomorphisms of the unit

interval Ix1.

Proof:

Let the functions 7%, g*&H where H is the space of all
real integrable positive functions except at zero as defined
in the unit interval I Then, without loss of generality,

the following can be obtained:

fotf(t)dt < fOHEf(t)dt,

jo'gft)dt ¢ fo'“g(:)dt

for t+ & I and a small real value ¢ > 0. Then, according
to the Theorem in [2], if f and g are strictly increasing
(decreasing) functions, the solution of g =f+s has a
unique solution in S and the unique solution s€.S can
be obtained. Thus, by induction, it is true for all 2&N.

From Theorem 2, we can obtain the following corollary:

346

Corollary 1 [Removed Constraint: Continuity]

All of the functions that are continuous, discontinuous,
and the combined signal can measure their relative
distance in the metric space with N=2, the 2nd degree
Integra-Normalizer, if they are integrable. [Proof is
trivial.]

Therefore, two issues are resolved in this section. From
Definition 6, the constraints contained in the DDT are
removed. An integrable function is approximated in such
a way that the function becomes all positive except the
origin so that the domain deformation function s becomes
a strictly increasing function. The domain deformation
function s€S is the order-preserved homeomorphic over
I to itself. The output of an integrable function through
the Integra-Normalizer is a continuous function. If » =2,
we can handle most cases of continuous, discontinuous,
or combinations of continuous and discontinuous functions
in real applications. In the following section, the choice of
a metric for the proper measurement of closeness

(similarity) is discussed.

5. A Metric Measuring Similarity Between Signals

Choosing a proper metric for measuring distance in
information space is critical. In [1, 2], the supremum
metric for measuring distance is introduced, while various
metric spaces are defined in many applications in order to
measure  distance between the several pieces of
information. Finding the most appropriate metric for the
problem under consideration is very important. The rule
of thumb in this procedure is to define a metric that
carries out the measurement so that the mathematical
distance matches with our intuitive understanding. The
distance between f; and g is measured by the

supremum metric defined as,

*d(f, g =xd(f, f5)=sup eilt—s()|

However, there is a possibility that the supremum metric
produces the same metric distance for two different
domain deformations from two different signals with
respect to a commonly compared function A#) as shown
in Fig. 7. The two different domain deformation functions
S and S classifies two different signals as the same
when d =4 In this research, in order to remove this
drawback, a new metric is defined as a tool for
measuring distance between two signals by including the
effect of the least square error method.



g(S)
(n
1.0 =
s
a 7
a S
e d’
(1)
0.0 1.0

Fig. 7 Two different deformations with the same

distance

Definition 7 Let S be the space of all order-preserving
I Let

f. g€ X. the space of integrable real-valued functions.

homeomorphisms  of the unit interval I to

Then a metric *d(f, g can be defined as!
*d(f, g) = *d(f.f> x) = asup e 1t~ (Dl + B(1 — &~ )
where a+8=1.0 and «, 8 20.0.

{Proof}:
1) (Positive) follows from .8 = 0,

and (1 — e~ LMSU9)

finite and nonnegative.

suplt—s(Hl = 0,
= (0, thus >*d(f, g is real-valued.

2) {identity) If a=0. B=1 from the condition a+g8=1.
such that  (1—e D¥U:9y—g. LSt — g
is obtained, so that LMS(f,g)=0 which yields f=g.

If a=0. then suplt—s(H=0. so that #=s(8. which

From this, e

The second term A(1—e H5V9)

implies that f=g.
becomes 0 if 8=0. If B=0, f=g Conversely. if f=g,
asup eilt—s(Dl=0, Bl—e MV =0

*xd(f,g)=0 = f=g

Therefore,

3) (Symmetrv) From s '(# is a reflection of s around
the diagonal of IxI and LMS(f,g) =LMS(g./). *d(f g)
= asup e )= (D) + BL—e " FBVEY = asup oplt—s o=

+B(1 __e—LMS(g‘/')): *d(g,ﬁ

4) (Triangle Inequality)

For fgheX, *dfe+xdgh) = asup,lt—si) +
Hl—e DU 4 gsup, ft—s (D +  Bl—e - LMS(e. 1)
g=f°s, h=f-s,a+B8=1 Then by the
following relations, we can obtain the relation, so that
*d(f, &)+ kd(g, k) < *xd(f, h).

where
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supit — s(Dl+suptt — s (Hl=
sup{ 1t — s(BDl+it — s(D) =
supl It — s(H+t — s(D) =

sup {1t — s

Suppose that
(l —e ~LMS(!,!-))£ (1 — — LMS(4, g)) + (1 —e —LMS(/,A’))
Then, if we applv both sides log, we get

1 + LMS(f < (1 + LMS(fg) + (1 +LMS(g h)
= LMS(f,W)<LMS(f,g) + LMS(g, h)

Thus, the assumption holds. Therefore, the statement
holds.

6. Experimental Resuits: 1-D Signal Metric Distance
Using the Modified Domain Deformation

A supremum metric measures the closeness between
signals as shown in Fig. 3. Here f and g dre two
functions obtained using the defined linear operator I'
onto the signals to be compared. The s is a function that
maps the domain of f to the domain of g, so that s
becomes a bijection between f and g The parameter ¢
is a variable defined in the domain of f, and the
parameter s is a variable defined in the domain of g. In
Fig. 3. the supremum metric is the length between
(x, » and (x', ¥').

As an example:

def ., . _{1.0,ifrelr, z+0.1],
fi == alt z-)—_{O.O,OZherm'se.
Fig. 8 shows the function when r=0.4, such as
fi=u(t—0.4). Fig. 9 shows a signal with an impulse at

t=0.6 such that:

£ 2L (t—0.4)+0.55(10.6)
where & is a unit impulse function. Fig. 10 is the
function fy defined as:

p gg_f_{l.o,ifte[o.a,o.9]
3 sin(nd), if £ =[0.3,0.5]0.0, elsewhere.

Fig. 11 and 12 show the results obtained from applying
the previously defined linear operator I’ *onto £ and f
respectivelv. The domain deformation functions for f
and f are shown in Fig. 14 and 15 The function used
in the domain of Fig. 13 is the function u({~0.8) while

the functions in Fig. 13, 14, and 15 are used in the range

of the domain deformation function as shown in Table 1.
Fig. 13 shows the s functions for several different I’ s
for f, where ¢ varies from 0 to 08 In Fig. 13 the
r=0.8 is labeled a. The
r=0.7 is labeled b In a

function corresponding to

function corresponding to

347
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similar manner, { in Fig. 13 corresponds to the case
when r=0.0.

As r in Fig. 13 becomes closer to 0.0, the domain
deformation function becomes closer to f in Fig. 13. It is
obvious that the functions obtained through the double
integral linear operator I’ 2 are all strictly increasing
functions as are the domain deformation functions. As
Table 1 and Fig. 13 show, the signals defined by varving
T in f; can be classified using the metric defined above,
while the LSE cannot be used for classifying the signals
since they yield the same metric distance for the different
s of f.

The similarity between signals is measured by
Stmiiarity=1.0—*d where d is a metric distance

defined by the MDDT and LSE.

Table 1 Similarity Measurement

Test Signal 1| Test Signal 2 S(Kdn]%%rrlrtgl Si(r;iéegty
r =08 r =00 0.44 0.1414
r =08 r =01 0.51 0.1414
r =08 r =02 0.58 0.1414
r =08 r =03 0.65 0.1414
r =038 r =04 0.72 0.1414
r =08 r =05 0.79 0.1414
r =08 r =06 0.86 0.1414
r =08 t =07 093 0.1414
r =08 t =03 1.0 0.0
r =08 with impulse 093 i.0
r=0g | With confinuos | g5 | oo

Fig. 8 A pulse function: f1
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Fig. 9 A pulse function with impulse
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Fig 10: Pulse function with sinusoidal
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7. Conclusion

This paper presents a new method of one-dimensional
signal classification using the metric defined on a
theory. The domain
deformation theory is modified by employing the newly

modified domain deformation
defined Integra-Normalizer.

Thus the constraint in [1, 2] is removed by employing
the double linear integration operator while the advantage
of the domain deformation theory is kept. The advantage

of this new method is that we can classify not only the



bounded continuous signal over the unit interval [ but
also the discontinuous signals over the unit interval I
Therefore any one-dimensional signal, whether continuous
or discontinuous, can be classified, more intuitively than
L* metric, using the modified domain deformation theory

and the metric defined on it.
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