Browse > Article
http://dx.doi.org/10.4134/JKMS.j190334

DEFORMATION OF LOCALLY FREE SHEAVES AND HITCHIN PAIRS OVER NODAL CURVE  

Sun, Hao (Department of Mathematics Sun Yat-Sen University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.4, 2020 , pp. 809-823 More about this Journal
Abstract
In this article, we study the deformation theory of locally free sheaves and Hitchin pairs over a nodal curve. As a special case, the infinitesimal deformation of these objects gives the tangent space of the corresponding moduli spaces, which can be used to calculate the dimension of the corresponding moduli space. The deformation theory of locally free sheaves and Hitchin pairs over a nodal curve can be interpreted as the deformation theory of generalized parabolic bundles and generalized parabolic Hitchin pairs over the normalization of the nodal curve, respectively. This interpretation is given by the correspondence between locally free sheaves over a nodal curve and generalized parabolic bundles over its normalization.
Keywords
Hitchin pair; nodal curve; generalized parabolic bundle; generalized parabolic Hitchin pair;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Garcia-Prada, P. B. Gothen, and V. Munoz, Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc. 187 (2007), no. 879, viii+80 pp. https://doi.org/10.1090/memo/0879
2 A. Lo Giudice and A. Pustetto, A compactification of the moduli space of principal Higgs bundles over singular curves, J. Geom. Phys. 110 (2016), 328-342. https://doi.org/10.1016/j.geomphys.2016.08.007   DOI
3 R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-1596-2
4 N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126. https://doi.org/10.1112/plms/s3-55.1.59   DOI
5 N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275-300. https://doi.org/10.1112/plms/s3-62.2.275   DOI
6 K. Yokogawa, Infinitesimal deformation of parabolic Higgs sheaves, Internat. J. Math. 6 (1995), no. 1, 125-148. https://doi.org/10.1142/S0129167X95000092   DOI
7 U. Bhosle, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat. 30 (1992), no. 2, 187-215. https://doi.org/10.1007/BF02384869   DOI
8 I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2) 49 (1994), no. 2, 219-231. https://doi.org/10.1112/jlms/49.2.219   DOI
9 U. Bhosle, Generalized parabolic Hitchin pairs, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 1-23. https://doi.org/10.1112/jlms/jdt058   DOI