1 |
O. Garcia-Prada, P. B. Gothen, and V. Munoz, Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc. 187 (2007), no. 879, viii+80 pp. https://doi.org/10.1090/memo/0879
|
2 |
A. Lo Giudice and A. Pustetto, A compactification of the moduli space of principal Higgs bundles over singular curves, J. Geom. Phys. 110 (2016), 328-342. https://doi.org/10.1016/j.geomphys.2016.08.007
DOI
|
3 |
R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-1596-2
|
4 |
N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126. https://doi.org/10.1112/plms/s3-55.1.59
DOI
|
5 |
N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275-300. https://doi.org/10.1112/plms/s3-62.2.275
DOI
|
6 |
K. Yokogawa, Infinitesimal deformation of parabolic Higgs sheaves, Internat. J. Math. 6 (1995), no. 1, 125-148. https://doi.org/10.1142/S0129167X95000092
DOI
|
7 |
U. Bhosle, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat. 30 (1992), no. 2, 187-215. https://doi.org/10.1007/BF02384869
DOI
|
8 |
I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2) 49 (1994), no. 2, 219-231. https://doi.org/10.1112/jlms/49.2.219
DOI
|
9 |
U. Bhosle, Generalized parabolic Hitchin pairs, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 1-23. https://doi.org/10.1112/jlms/jdt058
DOI
|