References
- ANSYS (2009), User Manual, Inc., U.S.A.
- Bailey, P.B. and Chen, P.J. (1987), "Natural modes of vibration of linear viscoelastic circular plates with free edges", Int. J. Solids Struct., 23(6), 785-795. https://doi.org/10.1016/0020-7683(87)90079-5
- Dong, C.Y. (2008), "Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-Ritz method", Mater. Des., 29(8), 1518-1525. https://doi.org/10.1016/j.matdes.2008.03.001
- Esmailzadeh, E. and Jalali, M.A. (1999), "Nonlinear oscillations of viscoelastic rectangular plates", J. Nonlin. Dyn., 18(4), 311-319. https://doi.org/10.1023/A:1026452007472
- Gupta, A.K. (2010), "Vibration analysis of visco-elastic rectangular plate with thickness varies linearly in one and parabolically in other direction", Adv. Studies Theorrot. Phys., 4(15), 743-758.
- Hagedorn, P. and Gupta, D.A. (2007), Vibrations and Waves in Continuous Mechanical Systems, John Wiley & Sons Ltd, UK.
- Hashemi, S.H., Taher, H.R.D. and Omidi, M. (2008), "3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method", J. Sound Vib., 311(3), 1114-1140. https://doi.org/10.1016/j.jsv.2007.10.020
- Hosseini, S.H., Omidi, M. and Taher, H.R.D. (2009), "The validity range of CPT and Mindlin plate theory in comparison with 3-D vibrational analysis of circular plates on the elastic foundation", Eur. J. Mech. A/Solids, 28(2), 289-304. https://doi.org/10.1016/j.euromechsol.2008.07.012
- Liew, K.M. and Yang, B. (2000), "Elasticity solutions for free vibrations of annular plates from three-dimensional analysis", Int. J. Solids Struct., 37(52), 7689-7702. https://doi.org/10.1016/S0020-7683(99)00306-6
- Liu, C.F. and Chen, G.T. (1995), "A simple finite element analysis of axisymmetric vibration of annular and circular plates", Int. J. Mech. Sci., 37(8), 861-871. https://doi.org/10.1016/0020-7403(94)00099-6
- Marynowski, K. (2005), Dynamics of the Axially Moving Orthotropic Web, first edition, Springer Inc., Germany.
- Nagaya, K. (1979), "Vibration of a viscoelastic plate having a circular outer boundary and an eccentric circular inner boundary for various edge conditions", J. Sound Vib., 63(1), 73-85. https://doi.org/10.1016/0022-460X(79)90378-X
- Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley, New York.
- Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multidirectional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Riande, E., Diaz-Calleja, R., Prolongo, M.G., Masegosa, R.M. and Salom, C. (2000), Polymer Viscoelasticity; Stress and Strain in Practice, Marcel Dekker Inc., New York.
- Khanna, A. and Sharma, A.K. (2012), "mechanical vibration of visco-elastic plate with thickness variation", Int. J. Appl. Math. Res., 1(2), 150-158.
- Khanna, A. and Sharma, A.K. (2013), "Natural vibration of viscoelastic plate of varying thickness with thermal effect", J. Appl. Sci. Eng., 16(2), 135-140.
- Sadd, M.H. (2009), Elasticity Theory, Applications, and Numeric, Elsevier Inc.,USA.
- Salehi, M. and Aghaei, H. (2005), "Dynamic relaxation large deflection analysis of non-axisymmetric circular viscoelastic plates", Comput. Struct., 83(23-24), 1878-1890. https://doi.org/10.1016/j.compstruc.2005.02.023
- Shariyat, M., Jafari, A.A. and Alipour, M.M. (2013), "Investigation of the thickness variability and material heterogeneity effects on free vibration of the viscoelastic circular plates", Acta Mechanica Solida Sinica, 26(1), 83-98. https://doi.org/10.1016/S0894-9166(13)60009-9
- So, J. and Leissa, A.W. (1998), "Three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 209(1), 15-41. https://doi.org/10.1006/jsvi.1997.1228
- Tahouneh, V. and Yas, M.H. (2012), "3-D free vibration analysis of thick functionally graded annular sector plates on Pasternak elastic foundation via 2-D differential quadrature method", Acta Mechanica, 223, 1879-1897. https://doi.org/10.1007/s00707-012-0648-6
- Tahouneh, V., Yas, M.H., Tourang, H. and Kabirian, M. (2013), "Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their circular edges", Meccanica, 48(6), 1313-1336. https://doi.org/10.1007/s11012-012-9669-4
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tahouneh, V. and Yas, M.H. (2014), "Influence of equivalent continuum model based on the Eshelby-Mori-Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates", Polymer Compos., 35(8), 1644-1661. https://doi.org/10.1002/pc.22818
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier Inc UK.
- Wang, H.J. and Chen, L.W. (2002), "Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer", Compos. Struct., 58(4), 563-570. https://doi.org/10.1016/S0263-8223(02)00165-4
- Wang, Y.Z. and Tsai, T.J. (1988), "Static and dynamic analysis of a viscoelastic plate by the finite element method", Appl. Acoustics, 25(2), 77-94. https://doi.org/10.1016/0003-682X(88)90017-5
Cited by
- Linear and nonlinear vibrations of variable cross‐section beams using shear deformation theory vol.101, pp.8, 2017, https://doi.org/10.1002/zamm.202000265
- Nonlinear dynamic buckling analysis of imperfect viscoelastic composite laminated plates vol.79, pp.5, 2017, https://doi.org/10.12989/sem.2021.79.5.653