• 제목/요약/키워드: deformation rigidity

검색결과 139건 처리시간 0.028초

DEFORMATION RIGIDITY OF ODD LAGRANGIAN GRASSMANNIANS

  • Park, Kyeong-Dong
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.489-501
    • /
    • 2016
  • In this paper, we study the rigidity under $K{\ddot{a}}hler$ deformation of the complex structure of odd Lagrangian Grassmannians, i.e., the Lagrangian case $Gr_{\omega}$(n, 2n+1) of odd symplectic Grassmannians. To obtain the global deformation rigidity of the odd Lagrangian Grassmannian, we use results about the automorphism group of this manifold, the Lie algebra of infinitesimal automorphisms of the affine cone of the variety of minimal rational tangents and its prolongations.

말뚝강성과 지반특성을 고려한 교량의 거동해석 (Analysis of Bridges behavior Considering Pile rigidity and Soil characteristics)

  • 안주옥;윤영만
    • 한국방재학회 논문집
    • /
    • 제1권3호
    • /
    • pp.103-110
    • /
    • 2001
  • 흙의 비선형 변형 특성과 말뚝의 강성을 동시에 고려한 즉, 말뚝과 지반의 상호 거동을 고려한 말뚝 기초 구조의 해석을 수행하였다. 특히 비균질, 비탄성 재료인 철근 콘크리트 말뚝의 단면응력과 균열 발생등의 원인으로 변화되는 말뚝의 휨강성을 구조해석에 적용하였다. 흙의 비선형 특성치는 토질 종류에 따라 흙의 탄성한계를 넘어 항복을 고려한 P-Y curve를 이용한 방법 및 N치에 의한 내부마찰각 산정에 따른 방법으로 얻었다. 본 연구 결과는 말뚝의 강성변화에 의해 교량상부구조의 변위 및 일부단면력이 커짐을 알 수 있었다. 따라서, 최적설계를 위한 정확한 구조해석에서 말뚝의 강성변화에 따른 적합한 구속조건을 고려할 필요가 있음을 알 수 있었다.

  • PDF

Effects of RHS face deformation on the rigidity of beam-column connection

  • Hadianfard, M.A.;Rahnema, H.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.489-500
    • /
    • 2010
  • The rigid connections of I-beams to Rectangular Hollow Sections (RHS) in steel structures usually behave as semi-rigid connection. This behavior is directly related to the column face deformation. The deformation in the wall of RHS column in the connection zone causes a relative rotation between beam end and column axis, which consequently reduces the rigidity of beam-column connection. In the present paper, the percentages of connection rigidity reduction for serviceability conditions are evaluated by using the finite element analysis. Such percentages for RHS columns without internal stiffeners are considerable, and can be calculated from presented graphs.

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

강성분포가 주기성을 갖는 구형쉘의 좌굴해석 (Buckling Analysis of Spherical Shells that Rigidity-Distribution has Periodicity)

  • 박상훈
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.45-52
    • /
    • 2002
  • Research about spherical shells been applying most usually is achieved by many investigators already and generalized equation has been derived. But, existent research is limited in case that spherical shell's roof rigidity is isotropy or orthotropy, and research that consider periodicity of rigidity-distribution that can happen by doing spherical shell's roof system by lattice system is not gone entirely. The purpose of this paper is applying Galerkin method to spherical shell that model periodicity of roof rigidity distribution that appear by roof lattice form of large space structure and develop structural analysis program that formularize. Rigidity-model of this research selects that of spherical shell which has 2-way grid. In this paper, buckling-strength and deformation distribution of isotopic spherical shell and 2-way grid spherical shell obtained by developed program could confirm the reliability by comparison with result of existent research.

  • PDF

Pile과 지반특성을 고려한 기초구조물의 거동해석 (Analysis far Behavior of Substructure Considering Characteristics of Pile and Soil)

  • 안주옥;공천석;정영묵;임정열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.253-259
    • /
    • 2000
  • This thesis investigated the behavior of super structure by varying the factors such as the change of pile rigidity, the characteristics of soil and the constraint condition of support. The results of this study are as follows; 1. The pile rigidity in the Fig 3.3 computed by the rotating deformed plane method becomes the elastic range at approximately about 5.1 m (D : 1.0 m) below the ground level. This result is consistent with the previous study that the pile deformation occurs approximately 3 to 6 times pile diameter from the pile head. 2. The values of forces and deformations for the structure-pile system in Y-direction appeared larger than that in X-direction, since the pile rigidity and constraint condition of support were changed as shown Fig.3.5 to 3.8. 3. The current practice for the analysis of structure-pile system has not considered the variation of pile rigidity and the constraint condition of support. So, the analysis of structure-pile system with large difference in super-structure rigidity must includes these factors in both X and Y directions.

  • PDF

자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구 (A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts)

  • 정의철;김용대;이정원;홍석관;이성희
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.

압연되는 스트립의 접촉 및 가공 응력에 대한 유한 요소 해석 (Finite Element Analysis on Contact and Work Stress of Rolled Strip)

  • 조재웅;한문식
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.23-29
    • /
    • 2008
  • This study analyzes the rolled circular rod strip with radius of loom and length of 350cm by using finite element analysis. The material strength and its durability of the rolled strip can be predicted through this study. As the penetration tolerance by contact decreases, the contact rigidity of strip increases. As the contact rigidity becomes the highest at the elapsed time of 1.2 second, the contact stress becomes the lowest. On the contrary, von-Mises stress becomes highest at this time. The total deformation on strip increases from the upper part of strip at the position near to rotating roll to the lower part of strip at the position near to fixing roll.

격자형 용접 띠철근으로 보강된 콘크리트 기둥의 해석적 접근 (Analytical Approach on the Concrete Columns with Welded Reinforcement Grids)

  • 최창식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권1호
    • /
    • pp.137-146
    • /
    • 1999
  • Analysis of R/C columns requires modeling of the plastic hinge region, as well as nonlinear material characteristics. This becomes a challenging task in view of the nonlinearity of both steel and concrete. Furthermore, formation and progression of plasticity in the hinge is a difficult phenomenan to simulate, especially under reversed cyclic loading and decaying strength conditions. This research provide one analytical model employed in column analysis, including the analysis procedure for establishing inelastic force-deformation relationships. The analytical results show good correlation with experimental data. The employed procedure with the adopted analytical models can be used to compute inelastic displacements of concrete columns with welded reinforcement grids. The inelastic deformability beyond the peak was similar to those indicated by columns with conventional ties. The superior performance of columns with welded grids may be attributed to the improved confinement characteristics of grids associated with increased rigidity of welded ties.

  • PDF