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RIGIDITY OF A RANK 1 CUSP OF PUNCTURED-SURFACE

GROUPS IN HYPERBOLIC 4-SPACE

Youngju Kim

Abstract. We prove that a punctured-torus group of hyperbolic 4-space

which keeps an embedded hyperbolic 2-plane invariant has a strictly par-
abolic commutator. More generally, this rigidity persists for a punctured-

surface group.

1. Introduction

The presence of screw parabolic isometries makes the geometry of four di-
mensional hyperbolic space interesting. On the boundary at infinity R̂n of an
(n+1)-dimensional hyperbolic space, a parabolic isometry is Möbius conjugate
to x 7→ Ax+ a with A ∈ SO(n), a ∈ Rn \ {0}. If A 6= I, then it is called screw
parabolic; otherwise it is strictly parabolic. Hyperbolic 4-space is the lowest
dimension hyperbolic space where screw parabolic isometries appear.

In hyperbolic 4-space H4, a screw parabolic isometry is not Möbius conjugate
to a strictly parabolic isometry but is topologically conjugate. Furthermore, a
screw parabolic isometry is not quasiconformally conjugate to a strictly para-
bolic isometry [10]. In fact, there are infinitely many quasiconformally distinct
conjugacy classes of screw parabolic isometries [10]. This contrasts to the fact
that all parabolic isometries are quasiconformally conjugate to each other and
hence there is only one quasiconformal conjugacy class of parabolic isometries
in H2 and H3. What does a hyperbolic 4-manifold with a screw parabolic
isometry look like?

Screw parabolic isometries create examples of geometrically finite hyper-
bolic 4-manifolds which are not quasiconformally stable [10]. We start with a
Fuchsian thrice-punctured sphere group G with a fundamental domain. Us-
ing the standard totally geodesic embedding of H2 in H4 and the Poincaré
extension, we extend the action of G to H4. Now acting on H4, the group

Received February 19, 2021; Revised September 30, 2021; Accepted December 31, 2021.
2020 Mathematics Subject Classification. Primary 57M50, 51M09; Secondary 30F40,

22E40.
Key words and phrases. Hyperbolic geometry, hyperbolic 4-space, parabolic isometry,

punctured-surface group, punctured-torus group, deformation, rigidity.
This paper was supported by Konkuk University in 2018.

c©2022 Korean Mathematical Society

351



352 Y. KIM

G has strictly parabolic isometries and keeps a hyperbolic 2-plane invariant.
Adding a rotational action around the invariant plane, we can continuously
deform the strictly parabolic isometries into screw parabolic isometries. In this
paper, we investigate if we can apply this idea to construct other hyperbolic
4-manifolds with a screw parabolic isometry. As a result, we discover a rigidity
for a strictly parabolic commutator of a punctured-surface group in contrast
to the thrice-punctured sphere group.

A punctured-surface group Gg,1(g ≥ 1) is a discrete free group generated by
2g loxodromic isometries with the condition that the product of commutators
of the generators is a parabolic isometry. We may think of Gg,1 as the image of
a discrete type-preserving representation to the group of orientation preserving
isometries acting on hyperbolic n-space Hn, ρ : π1(Sg,1) → Isom(Hn), where
Sg,1 is a punctured hyperbolic surface of genus g ≥ 1. The commutator con-
dition means the loop around the puncture determines a cusp of the manifold
Hn/Gg,1. We prove the following rigidity.

Main Theorem. If a punctured-surface group

Gg,1 = 〈f1, h1, . . . , fg, hg loxodromic | Π1≤i≤g[fi, hi] parabolic〉, g ≥ 1

keeps a totally geodesic plane invariant in hyperbolic 4-space, then the product
of commutators Π1≤i≤g[fi, hi] is a strictly parabolic isometry.

You might ask if we can deform a rank 2 maximal parabolic subgroup of
a Kleinian group (that is, a discrete group of isometries acting on hyperbolic
3-space) into one containing a screw parabolic isometry in hyperbolic 4-space.
The answer is negative. It is because a maximal parabolic subgroup containing
an irrational screw parabolic isometry in hyperbolic 4-space can only be rank
1 [10]. An irrational screw parabolic isometry is a screw parabolic isometry
which is not virtually strictly parabolic.

Deforming a Kleinian punctured-torus group in hyperbolic 4-space can be
found in [4]. However, they only considered cases involving strictly parabolic
isometries. We can find some interesting results about screw parabolic isome-
tries in [7, 15,16].

Acknowledgements. We thank the referee for the careful reading of the early
version of the paper and helpful comments to improve it.

2. Preliminaries and notations

In this section, we will give definitions and basic facts of hyperbolic spaces
and Vahlen matrices. For the basics on hyperbolic geometry, the reader is
referred to [5–7,9, 13,14]; for Vahlen matrices, to [1–3,8, 10–12,17–20].

Hyperbolic (n + 1)-space Hn+1 is the unique complete simply connected
(n+1)-dimensional Riemannian manifold with constant sectional curvature −1.

It has the natural boundary at infinity R̂n = Rn∪{∞}. Möbius transformations

acting on R̂n are finite compositions of reflections in co-dimension 1 spheres
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or hyperplanes. Every orientation preserving Möbius transformation of R̂n
extends continuously to an orientation preserving hyperbolic isometry of Hn+1

and vice-versa. Therefore, we identify the group of all orientation preserving
isometries of Hn+1, denoted by Isom(Hn+1) with the group of all orientation

preserving Möbius transformations of R̂n, denoted by Möb(R̂n). A Möbius

transformation of R̂n can be represented as a 2 × 2 matrix whose entries are
the Clifford numbers satisfying some conditions, called a Vahlen matrix. The
action of the 2×2 matrix is the usual action of Möbius transformations. This is
a natural generalization of the classical settings, PSL(2,R) and PSL(2,C), via
identifying the real numbers R with the Clifford algebra C0 and the complex
numbers C with the Clifford algebra C1.

The Clifford algebra Cn−1 is the associative algebra over the real numbers
generated by the elements e1, e2, . . . , en−1 subject to the relations e2l = −1 for
all l = 1, . . . , n− 1 and elem = −emel for l 6= m.

An element of Cn−1 is called a Clifford number. A Clifford number a is
of the form

∑
aII, where the sum is over all products I = ev1ev2 · · · evp with

1 ≤ v1 < v2 < · · · < vp ≤ n− 1 and aI ∈ R. The null product of generators is
the real number 1. Here are the three involutions in the Clifford algebra:

(1) The main involution a 7→ a′ is an automorphism obtained by replacing
each ei with −ei. Thus, (ab)′ = a′b′ and (a+ b)′ = a′ + b′.

(2) Reversion a 7→ a∗ is an anti-automorphism obtained by replacing each
ev1ev2 · · · evp with evpevp−1

· · · ev1 . Therefore, (ab)∗ = b∗a∗ and (a +
b)∗ = a∗ + b∗.

(3) Conjugation a 7→ a is an anti-automorphism obtained by a composition.
Therefore, a = (a′)∗ = (a∗)′.

The Euclidean norm |a| of a =
∑
aII ∈ Cn−1 is given by |a|2 =

∑
a2I . A

vector is a Clifford number of the form x = x0 + x1e1 + · · · + xn−1en−1 ∈
Cn−1, where the xi’s are real numbers. The set of all vectors forms an n-
dimensional subspace which we identify with Rn. For any vector x, x∗ = x
and x = x′. Every non-zero vector x is invertible with x−1 = x

|x|2 . Since the

product of invertible elements is invertible, every product of non-zero vectors
is invertible. A Clifford group Γn−1 is a multiplicative group generated by all
non-zero vectors of Cn−1. We note that Γn−1 = Cn−1 − {0} is true for only
n = 1, 2, 3. For example, let a = 1 + e1e2e3 ∈ C4, then a /∈ Γ4.

Definition. A matrix A =
(
a b
c d

)
is said to be a Vahlen matrix if the following

conditions are satisfied:

(1) a, b, c, d ∈ Γn−1 ∪ {0}.
(2) ad∗ − bc∗ = 1.
(3) ab∗, cd∗, c∗a, d∗b ∈ Rn.

A Vahlen matrix A has a multiplicative inverse A−1 =
(
d∗ −b∗
−c∗ a∗

)
which is

also a Vahlen matrix. Hence, the set of all Vahlen matrices forms a group,
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denoted by SL(2,Γn−1). Since Γn−1 ⊂ Γn, it follows that SL(2,Γn−1) is a
subgroup of SL(2,Γn).

A Vahlen matrix A =
(
a b
c d

)
∈ SL(2,Γn−1) induces a Möbius transformation

of R̂n by Ax = (ax+b)(cx+d)−1 for any vector x = x0+x1e1+· · ·+xn−1en−1 ∈
Rn, and ∞ 7→ ∞ if c = 0 and ∞ 7→ ac−1, −c−1d 7→ ∞ if c 6= 0. Moreover,
any orientation preserving Möbius transformation of R̂n can be presented as
a Vahlen matrix. Replacing x with x + xnen ∈ Rn+1, we can automatically
extend the action of A to R̂n+1: x+xnen 7→ (a(x+xnen)+b)(c(x+xnen)+d)−1.

The coefficient of the last generator en of the image is xn

|cx+d|2 . This shows

that the extension keeps the upper half space of Rn+1 invariant. In fact, the
group of Vahlen matrices modulo ±I is isomorphic to the group of orientation
preserving isometries of Hn+1.

2.1. Hyperbolic 4-space and Vahlen matrices

From now on, we will only consider the case that n = 3 which corresponds to
hyperbolic 4-space H4. The upper half-space model of the hyperbolic 4-space
is

H4 = {x0 + x1e1 + x2e2 + x3e3 | x0, x1, x2, x3 ∈ R, x3 > 0}.
The boundary at infinity is

R̂3 = {x0 + x1e1 + x2e2 | x0, x1, x2 ∈ R} ∪ {∞}.

The isometry group Isom(H4) is isomorphic to SL(2,Γ2)/ ± I. The Clifford
algebra C2 = {x0 + x1e1 + x2e2 + x3e1e2 | x0, x1, x2, x3 ∈ R} is isomorphic to
the quaternions H = {x0 + x1i+ x2j + x3k | x0, x1, x2, x3 ∈ R} as an algebra,
where we identify e1, e2 and e1e2 with i, j and k, respectively. We note that
the Clifford group Γ2 is C2 \ {0}.

We denote the subgroup of all unit elements of Γ2 by Γunit
2 :

Γunit
2 = {x ∈ Γ2 | |x| = 1}.

For x = x0 + x1e1 + x2e2 + x3e1e2 ∈ Γunit
2 , i.e.,

∑
x2i = 1, we can rewrite

x0 + x1e1 + x2e2 + x3e1e2 = x0 +
√

1− x20
x3 − x2e1 + x1e2√

x21 + x22 + x23
e1e2.

It follows that a unit element of Γ2 can be written as cos θ + sin θve1e2, where
θ ∈ [0, π), v ∈ R3 is a unit vector. Hence, every non-zero element λ ∈ Γ2 can
be written as λ = |λ| (cos θ + sin θve1e2), where θ ∈ [0, π), v ∈ R3 is a unit
vector.

We denote the line generated by a vector v ∈ R3 by 〈v〉. In particular,

R = 〈1〉 and R̂ = 〈1〉 ∪ {∞} in R̂3.
Let f be a loxodromic isometry which fixes 0 and ∞. Then f is of the

form
(
λ 0
0 λ∗−1

)
for a non-unit Clifford number λ = |λ| (cos θ + sin θve1e2) ∈ Γ2,

where θ ∈ [0, π), v ∈ R3 is a unit vector. On the boundary at infinity R̂3, the
line 〈v〉 passing through the two fixed points 0 and ∞ is kept invariant by the
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action of f . For θ 6= 0, 〈v〉 is a unique invariant line among all the lines passing
through the two fixed points 0 and ∞ of the action of f . If θ = 0, f is also
called hyperbolic and every line passing through the two fixed points 0 and ∞
is kept invariant by the action of f .

A parabolic isometry which fixes ∞, rotates around 〈1〉 by 2θ and sends 0
to 1 is of the form ( α α

0 α ), where α = cos θ+ sin θe1e2 ∈ Γ2, 0 ≤ θ < π. If θ = 0,
then it is strictly parabolic; otherwise it is screw parabolic.

Theorem 2.1 ([8]). (1) For a unit element α = cos θ + sin θve1e2 ∈ Γunit
2

satisfying v ∈ R3 and |v| = 1,
(
α 0
0 α′

)
∈ SL(2,Γ2) is a rotation around

〈v〉 by 2θ in R3.

(2) An isometry
(
λ µ

0 λ∗−1

)
∈ SL(2,Γ2) is loxodromic if and only if |λ| 6= 1.

(3) An isometry
(
λ µ
0 λ′

)
∈ SL(2,Γ2) with |λ| = 1 is

strictly parabolic if λ ∈ R,
screw parabolic if µ /∈ R3,

elliptic otherwise.

Figure 1. The boundary at infinity R̂3 of hyperbolic 4-space

3. Rigidity

Lemma 3.1. An elliptic isometry R ∈ Möb(R̂3) which is a rotation around
〈1〉 commutes with an element of SL(2,R).

Proof. A rotation R around 〈1〉 can be written as R = ( α 0
0 α ), where α =

cos θ + sin θe1e2 ∈ Γunit
2 , θ ∈ (0, π). For an element A =

(
a b
c d

)
∈ SL(2,R),

RA =
(
aα bα
cα dα

)
= AR. �
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Lemma 3.2. Let f ∈ Möb(R̂3) be a loxodromic isometry which keeps R̂ invari-
ant. Then f can be written as φ−1RFφ, where φ ∈ SL(2,R), R is a rotation
around 〈1〉 and F ∈ SL(2,R) is hyperbolic.

Proof. Since f keeps the line R̂ invariant, the two fixed points of f , called a and
b, are also contained in R̂. Let φ ∈ SL(2,R) be an isometry which sends a and b
to 0 and∞, respectively. Then φfφ−1 fixes 0 and∞ and hence it can be written
as
(
λ 0
0 λ∗−1

)
for a non-unit Clifford number λ = r (cos θ + sin θve1e2) ∈ Γ2,

where r > 0, θ ∈ [0, π), v ∈ R3 is a unit vector. Since φfφ−1 also keeps R
invariant, it follows that θ = 0 or v = ±1. That is

φfφ−1 =

(
α 0
0 α

)(
r 0
0 1

r

)
,

where α = cos θ + sin θe1e2. Thus, we proved the lemma. �

For g ≥ 1, a punctured-surface group Gg,1 of hyperbolic 4-space is a discrete
free group generated by 2g loxodromic isometries with the condition that the
product of commutators of generators is a parabolic isometry:

Gg,1 = 〈f1, h1, . . . , fg, hg loxodromic | Π1≤i≤g[fi, hi] parabolic〉 < Isom(H4).

We may think of Gg,1 as the image of a discrete type-preserving representation
ρ : π1(Sg,1)→ Isom(H4), where Sg,1 is a punctured hyperbolic surface of genus
g. We call such a group a punctured-torus group.

First, we prove a rigidity for a punctured-torus group G1,1.

Theorem 3.3. If a punctured-torus group G1,1 keeps a totally geodesic plane
P invariant, then the commutator is a strictly parabolic isometry.

Proof. Without loss of generality, we may assume that the boundary at infinity

of P is ∂P = R̂ and f fixes 0 and ∞. Since f and h keep R̂ invariant, applying
Lemma 3.2, it follows that f = R1F and h = φ−1R2Hφ, where R1, R2 are
rotations around R and φ, F,H ∈ SL(2,R).

[f, h] = [R1F, φ
−1R2Hφ]

= R1F
(
φ−1R2Hφ

)(
R1F

)−1(
φ−1R2Hφ

)−1
= [F, φ−1Hφ].

In the above computation, we use Lemma 3.1. Since F and φ−1Hφ are in
SL(2,R), the commutator also belongs to SL(2,R) and hence [f, h] is a strictly
parabolic isometry. �

Now, we generalize the rigidity to a punctured-surface groupGg,1 with g ≥ 2.

Theorem 3.4. Let Gg,1 be a punctured-surface group with genus g ≥ 2. If Gg,1
keeps a totally geodesic plane P invariant, then the product of commutators
Π1≤i≤g[fi, hi] is a strictly parabolic isometry.
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Proof. Without loss of generality, we may assume that the boundary at infinity

of P is ∂P = R̂. Let i = 1, . . . , g. Since loxodromic fi and hi keep R̂ invariant
on the boundary at infinity R̂3, applying Lemma 3.2, fi and hi can be written
as fi = φ−1i RiFiφi and hi = ψ−1i KiHiψi, where φi, ψi ∈ SL(2,R), Ri and Ki

are rotations around R, Fi and Hi ∈ SL(2,R).

[fi, hi] = φ−1i RiFiφi
(
ψ−1i KiHiψi

)(
φ−1i RiFiφi

)−1(
ψ−1i KiHiψi

)−1
= [φ−1i Fiφi, ψ

−1
i Hiψi] ∈ SL(2,R).

In the above computation, we use Lemma 3.1. Thus, Π1≤i≤g[fi, hi] can only
be strictly parabolic. �

Due to the rigidity of Theorem 3.3, we see that for a Fuchsian punctured-
torus group (that is a punctured-torus group of isometries acting on hyperbolic
2-space), adding a rotational action around the invariant plane does not deform
the strictly parabolic commutator into a screw parabolic commutator. Then we
might ask if we can apply the idea to a non-Fuchsian punctured-torus group.
In below, we carry out the idea in a way, but we are only able to have a
strictly parabolic commutator. However, we have a 2-dimensional parameter
family of genuine punctured-torus groups acting on H4 as a result. Before we
start to construct the 2-dimensional parameter family, we note that if a group
G < Isom(H4) keeps a 3-dimensional totally geodesic subspace invariant, then
it cannot contain a screw parabolic isometry.

Figure 2. A fundamental domain of a punctured-torus group

Now we will construct a 2-dimensional parameter family of genuine punc-
tured-torus groups acting on H4. We start with a Kleinian punctured-torus
group G = 〈F,H〉 < Isom(H3) whose fundamental domain is D on R̂2 as
follows (see Figure 2).

• D is a domain bounded by four circles C1, C2, C3 and C4.
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• C1 and C3 are concentric.
• C2 is tangent to C1 and C3 at a2 and a3, respectively.
• C4 is tangent to C1 and C3 at a1 and a4, respectively.
• F is a hyperbolic isometry which maps C1 to C3, a1 7→ a4 and a2 7→ a3.
• H is a hyperbolic isometry which maps C2 to C4, a2 7→ a1 and a3 7→ a4.

Note that the commutator [F,H] is strictly parabolic with a fixed point a4.
Let L1 be a common orthogonal line of C1 and C3, which passes a1, a4, and L2

a common orthogonal circle of C2 and C4, which passes through a3, a4 (Figure
3). We will use L1 and L2 to deform the group G.

Figure 3. Deforming a punctured-torus group

Now, we embed H3 to H4 as P = {x0 + x1e1 + x3e3 ∈ H4 | x0, x1, x3 ∈
R, x3 > 0} so that ∂P = 〈1, e1〉 ∪ {∞} ⊆ R̂3. Without loss of generality, we
may assume a4 = 0, L1 = R and L2 ⊆ 〈1, e1〉 is a circle whose center is 1

2e1
and radius 1

2 .

Let Si ⊆ R3 (i = 1, 2, 3, 4) be a sphere which has Ci as a great circle and
D′ ⊆ R3 the domain bounded by S1, S2, S3 and S4. Then D′ is a fundamental
domain for the action of G on ∂H4. The corresponding side pairing is F (S1) =
S3 and H(S2) = S4.

Let Ri (i = 1, 2) be a non-trivial rotation around Li by θi:

R1 =

(
α1 0
0 α1

)
, R2 =

(
α2 0

2 sin θ2e2 α2

)
∈ SL(2,Γ2),

where αi = cos θi + sin θie1e2 ∈ Γunit
2 and θi ∈ (0, π2 ).

We take F ′ = R2F and H ′ = R1H. Then F ′ and H ′ are loxodromic and still
map S1 and S2 to S3 and S4, respectively. Using Lemma 3.1, R1 commutes
with F . Since the hyperbolic isometry H keeps L2 invariant, R2 commutes
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with H. Since the commutator [F,H] is strictly parabolic fixing 0, it is of the
form ( 1 0

v 1 ) for a non-zero vector v ∈ R3. Thus,

[F ′, H ′] = (R2F )(R1H)(F−1R−12 )(H−1R−11 )

= R2R1[F,H]R−12 R−11

=

(
α 0
� α

)(
1 0
v 1

)(
α∗ 0
� α∗

)
=

(
1 0
� 1

)
,

(1)

where α = cos(θ1 + θ2) + sin(θ1 + θ2)e1e2. Therefore, [F ′, H ′] is a strictly
parabolic isometry and G′ = 〈F ′, H ′〉 is a punctured-torus group which is
not Kleinian, nor Fuchsian. Since the generators F ′ and H ′ have rotation-
parameters θ1 and θ2, respectively, what we have here is a 2-dimensional pa-
rameter family of genuine punctured-torus groups acting on hyperbolic 4-space.
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[3] L. V. Ahlfors, On the fixed points of Möbius transformations in Rn, Ann. Acad. Sci.

Fenn. Ser. A I Math. 10 (1985), 15–27. https://doi.org/10.5186/aasfm.1985.1005
[4] Y. Araki and K. Ito, An extension of the Maskit slice for 4-dimensional Kleinian groups,

Conform. Geom. Dyn. 12 (2008), 199–226. https://doi.org/10.1090/S1088-4173-08-

00187-2

[5] A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, 91,

Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-1146-4

[6] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer-
Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-642-58158-8

[7] B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993),

no. 2, 245–317. https://doi.org/10.1006/jfan.1993.1052
[8] C. Cao and P. L. Waterman, Conjugacy invariants of Möbius groups, in Quasiconformal
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[20] P. L. Waterman, Möbius transformations in several dimensions, Adv. Math. 101 (1993),
no. 1, 87–113. https://doi.org/10.1006/aima.1993.1043

Youngju Kim

Department of Mathematics Education
Konkuk University

Seoul 05029, Korea

Email address: geometer2@konkuk.ac.kr

https://doi.org/10.1090/S0002-9939-01-05858-0
https://doi.org/10.1090/S0002-9939-01-05858-0
https://doi.org/10.1090/conm/311/05462
https://doi.org/10.1016/j.aim.2012.03.009
https://doi.org/10.1016/j.aim.2012.03.009
https://doi.org/10.1007/BF01450354
https://doi.org/10.1080/17476939008814442
https://doi.org/10.1006/aima.1993.1043

