DOI QR코드

DOI QR Code

RIGIDITY OF A RANK 1 CUSP OF PUNCTURED-SURFACE GROUPS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju (Department of Mathematics Education Konkuk University)
  • Received : 2021.02.19
  • Accepted : 2021.12.31
  • Published : 2022.03.31

Abstract

We prove that a punctured-torus group of hyperbolic 4-space which keeps an embedded hyperbolic 2-plane invariant has a strictly parabolic commutator. More generally, this rigidity persists for a punctured-surface group.

Keywords

Acknowledgement

This paper was supported by Konkuk University in 2018.

References

  1. L. V. Ahlfors, Old and new in Mobius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 93-105. https://doi.org/10.5186/aasfm.1984.0901
  2. L. V. Ahlfors, Mobius transformations and Clifford numbers, in Differential geometry and complex analysis, 65-73, Springer, Berlin, 1985.
  3. L. V. Ahlfors, On the fixed points of Mobius transformations in Rn, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27. https://doi.org/10.5186/aasfm.1985.1005
  4. Y. Araki and K. Ito, An extension of the Maskit slice for 4-dimensional Kleinian groups, Conform. Geom. Dyn. 12 (2008), 199-226. https://doi.org/10.1090/S1088-4173-08-00187-2
  5. A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-1146-4
  6. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Universitext, SpringerVerlag, Berlin, 1992. https://doi.org/10.1007/978-3-642-58158-8
  7. B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245-317. https://doi.org/10.1006/jfan.1993.1052
  8. C. Cao and P. L. Waterman, Conjugacy invariants of Mobius groups, in Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), 109-139, Springer, New York, 1998.
  9. M. Kapovich, Kleinian groups in higher dimensions, in Geometry and dynamics of groups and spaces, 487-564, Progr. Math., 265, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8608-5_13
  10. Y. Kim, Quasiconformal stability for isometry groups in hyperbolic 4-space, Bull. Lond. Math. Soc. 43 (2011), no. 1, 175-187. https://doi.org/10.1112/blms/bdq092
  11. Y. Kim, Geometric classification of isometries acting on hyperbolic 4-space, J. Korean Math. Soc. 54 (2017), no. 1, 303-317. https://doi.org/10.4134/JKMS.j150734
  12. Y. Kim and S. P. Tan, Ideal right-angled pentagons in hyperbolic 4-space, J. Korean Math. Soc. 56 (2019), no. 3, 595-622. https://doi.org/10.4134/JKMS.j180096
  13. B. Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften, 287, Springer-Verlag, Berlin, 1988.
  14. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-4013-4
  15. P. Susskind, An infinitely generated intersection of geometrically finite hyperbolic groups, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2643-2646. https://doi.org/10.1090/S0002-9939-01-05858-0
  16. P. Susskind, The Margulis region and continued fractions, in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), 335-343, Contemp. Math., 311, Amer. Math. Soc., Providence, RI, 2002. https://doi.org/10.1090/conm/311/05462
  17. S. P. Tan, Y. L. Wong, and Y. Zhang, Delambre-Gauss formulas for augmented, right-angled hexagons in hyperbolic 4-space, Adv. Math. 230 (2012), no. 3, 927-956. https://doi.org/10.1016/j.aim.2012.03.009
  18. K. Th. Vahlen, Ueber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), no. 4, 585-593. https://doi.org/10.1007/BF01450354
  19. M. Wada, Conjugacy invariants of Mobius transformations, Complex Variables Theory Appl. 15 (1990), no. 2, 125-133. https://doi.org/10.1080/17476939008814442
  20. P. L. Waterman, Mobius transformations in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. https://doi.org/10.1006/aima.1993.1043