본 연구는 삼차원 절리텐서 파라미터와 DFN(discrete fracture network) 블록의 변형특성 간의 상관성 분석을 수행하여 절리텐서의 방향성분 및 일차불변량이 절리성 암반의 변형계수 및 전단탄성계수에 미치는 영향을 평가하였다. 확정적 방향성을 갖는 1~2개의 절리군을 사용하여 절리의 빈도 및 길이분포의 변화에 따라 생성한 총 224개의 DFN 블록에 대하여 절리텐서 파라미터가 산정되었다. 또한, 정육면체 DFN 블록에 대하여 개별요소법을 활용하여 서로 직교하는 세 방향으로 변형특성이 추정되었다. 절리텐서의 일차불변량이 증가할수록 변형계수 및 전단탄성계수는 대체로 저감되는 양상을 나타내지만, 감소폭이 줄어들어 일차불변량이 특정 기준값을 상회하면 변형계수 및 전단탄성계수는 거의 일정한 값을 유지하였다. 삼차원 DFN 블록에 대한 지향적 변형특성은 대응하는 방향의 절리텐서성분과 멱함수의 강한 상관관계를 도출하였다.
복합재료는 높은 비 강성 및 비 강도 특성으로 인해 기체 혹은 액체 연료를 저장하기 위한 압력 용기의 설계 및 제작에 널리 활용되고 있다. 이에 따라, 압력용기의 파열압력 또는 파단 변형률의 기계적 특성의 보다 정확한 측정은 상용화 전에 필수적 요소이다. 그러나, 기존의 시험방법을 활용한 복합재료 압력 용기의 안전성 검증은 하중 전달 매체의 변형으로 인한 추가적인 에너지 손실의 발생과, 불필요한 하중 및 모멘트의 발생 등의 한계가 있다. 따라서 본 연구에서는 수직기둥의 이론적인 하중전달 정도와 적용 가능한 수직방향 변위를 고려하여 세그먼트형 링 버스트 시험장치를 설계하였다. 또한, 세그먼트 형 링 버스트 시험장치의 균일한 압력분포를 검증하기 위해 수치해석을 활용하였고, 수압 시험방법과 링 시편의 원주방향 응력 및 변형률 분포를 비교하였다. 복합재료 압력용기의 파괴 거동을 모사하기 위해 Hashin 파손 기준을 적용하였고, 실험적으로 파단 변형률을 측정하여 이를 수치해석 결과와 비교하였다.
This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.
Due to the extensive use of concrete structures in various applications, the improvement of their strength and quality has become of great importance. A new way of achieving this purpose is to add different types of nanoparticles to concrete admixtures. In this work, a mathematical model has been employed to analyze the vibration of concrete beams reinforced by graphene oxide (GO) nanoparticles. To verify the accuracy of the presented model, an experimental study has been conducted to compare the compressive strengths of these beams. Since GO nanoparticles are not readily dissolved in water, before producing the concrete samples, the GO nanoparticles are dispersed in the mixture by using a shaker, magnetic striker, ultrasonic devices, and finally, by means of a mechanical mixer. The sinusoidal shear deformation beam theory (SSDBT) is employed to model the concrete beams. The Mori-Tanaka model is used to determine the effective properties of the structure, including the agglomeration influences. The motion equations are calculated by applying the energy method and Hamilton's principle. The vibration frequencies of the concrete beam samples are obtained by an analytical method. Three samples containing 0.02% GO nanoparticles are made and their compressive strengths are measured and compared. There is a good agreement between our results and those of the mathematical model and other papers, with a maximum difference of 1.29% between them. The aim of this work is to investigate the effects of nanoparticle volume fraction and agglomeration and the influences of beam length and thickness on the vibration frequency of concrete structures. The results show that by adding the GO nanoparticles, the vibration frequency of the beams is increased.
As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.
A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.
Landslides are often triggered by weak interlayers initiated in tailings dam foundations, and hazards gradually occur. This is serious for landslides in high tailings dams due to their high potential energy. Tailing samples with a fine-grained interlayer at a set dip angle were prepared. Consolidated undrained (CU) triaxial shear tests were carried out by using a high-pressure triaxial apparatus. The results were compared with the results under a low confining pressure. Four reasons were summarized for high tailings dams more prone to instability than low dams. The shear strength of the samples with dipping interlayers decreases with increasing dip angle. An obvious straight drop in the stress path after the peak occurs in samples with dipping interlayers at an angle of 60°. The effect of the interlayer on the mechanical behaviour of tailings is very sensitive, especially for the sample with a dipping interlayer at an angle of 60°. Shear slipping along the interlayer should be given more attention in tailings dams. Compared with the results under low confining pressure, the stress decreases continuously for the samples with dipping interlayers at large angles under high confining pressure. The positive pore pressure, which reduces the effective stress, occurred in tailings samples under high confining pressure. The residual strength of tailings under high confining pressure is smaller than that under low confining pressure. These factors increase the dam break risk and the disaster impact for high tailings dams.
파의 처오름높이는 제방, 호안 및 방파제와 같은 해안 구조물의 설계에 영향을 미치는 가장 중요한 매개변수 중 하나이다. 본 연구에서는 비정수압 수치모형인 SWASH(Zijlema et al., 2011)를 이용해 고정된 수중 및 부유식 사각형 구조물에 의한 고립파의 처오름높이 저감 효과를 분석하였다. SWASH 수치모형이 고립파의 전파, 쇄파 및 처오름현상을 매우 잘 재현하는 것을 확인하였다. 또한 수중 및 부유식 사각형 구조물에 의한 고립파의 파랑변형을 잘 재현하는 것을 확인하였다. 마지막으로 수중 및 부유식 사각형 구조물의 처오름높이 저감 효과를 검토하였다. 부유식 구조물의 에너지 감쇠효과는 수중 구조물보다 크고, 처오름높이 저감에 더 효과적인 것으로 나타났다.
Ultrasonic Nanocrystal Surface Modification (UNSM) is a peening technology that generates elastic-plastic deformation on the material surface to which a static load of a air compressor and a dynamic load of ultrasonic vibration energy are applied by striking the material surface with a strike pin. In the UNSM-treated material, the structure of the surface layer is modified into a nano-crystal structure and compressive residual stress occurs. When UNSM is applied to welds in a reactor coolant system where PWSCC can occur, it has the effect of relieving tensile residual stress in the weld and thus suppressing crack initiation and propagation. In order to quantitatively evaluate the compressive residual stress generated by UNSM, many finite element studies have been conducted. In existing studies, single-path UNSM or UNSM in a limited area has been simulated due to excessive computing time and analysis convergence problems. However, it is difficult to accurately calculate the compressive residual stress generated by the actual UNSM under these limited conditions. Therefore, in this study, a minimum finite element peening analysis area that can reliably calculate the compressive residual stress is proposed. To confirm the validity of the proposed analysis area, the compressive residual stress obtained from the experiment are compared with finite element analysis results.
본 논문에서는 저속충격하중을 받은 필라멘트 와인딩 탄소섬유강화 복합재 압력용기의 잔류강도 저하특성에 대한 수치해석 및 실험결과에 대해서 논한다. 복합재 압력용기의 원통부의 여러 곳에 대해 낙하 공구의 끝단을 모사한 삼각형 충격자를 사용한 저속 충격시험이 실시되었고, 유한요소해석을 수행하여 충격시의 기계적 변형 및 응력분포 거동에 대한 예측을 실시하였다. 충격하중을 받은 복합재 압력용기의 잔류강도 저하 특성을 정량적으로 평가하기 위해, 충격부위를 포함하는 원환시편을 압력용기의 실린더부로부터 채취하여, 원주방향 내압인장강도 측정 수압시험법으로부터, 원환시편의 수압파열 압력을 측정하였다. 결과적으로 본 연구를 통해 충격 에너지의 수준에 따른 잔류강도 변화가 성공적으로 계측되었으며, 복합재 압력용기의 충격손상허용을 정량적으로 평가하기 위한 유용한 방법론이 정립되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.