DOI QR코드

DOI QR Code

Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles

고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의

  • Received : 2022.11.21
  • Accepted : 2022.11.30
  • Published : 2022.12.31

Abstract

The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup height of solitary waves by submerged and floating rectangular obstacles. It was confirmed that the SWASH model reproduces the propagation, breaking, and runup of solitary waves quite well. In addition, it was confirmed that the wave deformation of the solitary wave by submerged and floating rectangular obstacles was well reproduced. Finally, we conducted an examination of the effect of reducing the runup height of submerged and floating rectangular obstacles. Reduced runup heights are calculated and the characteristics of runup height reduction according to the dimensions of the obstacle were analyzed. The energy attenuation effect of the floating obstacle is greater than the submerged obstacle, and it is shown to be more effective in reducing the runup height.

파의 처오름높이는 제방, 호안 및 방파제와 같은 해안 구조물의 설계에 영향을 미치는 가장 중요한 매개변수 중 하나이다. 본 연구에서는 비정수압 수치모형인 SWASH(Zijlema et al., 2011)를 이용해 고정된 수중 및 부유식 사각형 구조물에 의한 고립파의 처오름높이 저감 효과를 분석하였다. SWASH 수치모형이 고립파의 전파, 쇄파 및 처오름현상을 매우 잘 재현하는 것을 확인하였다. 또한 수중 및 부유식 사각형 구조물에 의한 고립파의 파랑변형을 잘 재현하는 것을 확인하였다. 마지막으로 수중 및 부유식 사각형 구조물의 처오름높이 저감 효과를 검토하였다. 부유식 구조물의 에너지 감쇠효과는 수중 구조물보다 크고, 처오름높이 저감에 더 효과적인 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF2021R1A6A1A1A0304518511).

References

  1. Chang, K.A., Hsu, T.J. and Liu, P.L.F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves. Coastal Engineering, 44(1), 13-36.  https://doi.org/10.1016/S0378-3839(01)00019-9
  2. Cho, I.H. (2002). Wave control performance of moored pontoontype floating breakwater. Journal of the Korean Society for Marine Environment & Energy, 5(3), 35-44(in Korean). 
  3. Cho, Y.-S., Lee, J.I. and Kim, Y.T. (2002). Hydraulic experiments on reflection of regular waves due to rectangular submerged breakwaters. Journal of Korea Water Resources Association, 35(5), 563-573 (in Korean).  https://doi.org/10.3741/JKWRA.2002.35.5.563
  4. Frederiksen, H.D. (1971). Wave attenuation by fluid filled bags. Journal of the Waterways, Harbors and Coastal Engineering Division, 97(1), 73-90. 
  5. Goring, D.G. and Raichlen, F. (1992). Propagation of long waves onto shelf. Journal of Waterway Port Coastal and Ocean Engineering, 118(1), 43-61.  https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(43)
  6. Grilli, S.T., Losada, M.A. and Martin, F. (1994). Characteristics of solitary wave breaking induced by breakwaters. Journal of Waterway Port Coastal and Ocean Engineering, 120(1), 74-92.  https://doi.org/10.1061/(ASCE)0733-950X(1994)120:1(74)
  7. Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Engineering, 51(7), 557-579.  https://doi.org/10.1016/j.coastaleng.2004.06.003
  8. Hales, L.Z. (1981). Floating Breakwaters : State of the Art Literature Review. Technical Report No. 81-1, Coastal Engineering Research Center, U.S. Army Corps of Engineers, Fort Belvoir, Virginia. 
  9. Ha, T., Jung, W. and Cho, Y.-S. (2012). Numerical study on reduced runup heights of solitary wave by submerged structures. Journal of the Korean Society of Hazard Mitigation, 12(5), 251-258 (in Korean).  https://doi.org/10.9798/KOSHAM.2012.12.5.251
  10. Huang, C.J. and Dong, C.M. (1999). Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Engineering, 37(2), 123-148.  https://doi.org/10.1016/S0378-3839(99)00017-4
  11. Huang, C.J. and Dong, C.M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engineering, 43(3-4), 265-286.  https://doi.org/10.1016/S0378-3839(01)00017-5
  12. Hwang, J.K., Lee, S.H. and Cho, Y.-S. (2004). Transformation of irregular waves due to rectangular submerged non-porous breakwaters. Journal of Korea Water Resources Association, 37(11), 949-958 (in Korean).  https://doi.org/10.3741/JKWRA.2004.37.11.949
  13. Irtem, E., Seyfioglu, E. and Kabdasli, S. (2011). Experimental investigation on the effects of submerged breakwaters on tsunami run-up height. Journal of Coastal Research, 516-520. 
  14. Jung, J.-S., Cho, D.-H., Hwang, J.-K. and Cho, Y.-S. (2004). Reflection of random waves propagating over rectangular submerged non-porous breakwaters. Journal of Korea Water Resources Association, 37(9), 729-736 (in Korean).  https://doi.org/10.3741/JKWRA.2004.37.9.729
  15. Jung, J.-S., Kang, K.-Y. and Cho, Y.-S. (2007). Analysis of multidirectional random waves propagating over multi arrayed impermeable submerged breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 19(1), 29-37 (in Korean). 
  16. Kim, D.S., Lee, K.H., Yoo, H.S., Kim, C.H. and Son, B.K. (2004). A study of the wave control characteristics of the permeable submerged breakwater using VOF method in irregular wave fields. Journal of Korean Society of Coastal and Ocean Engineers, 16(3), 121-129 (in Korean). 
  17. Lee, J. (2005). Numerical investigation of wave interaction with a floating breakwater. Ph.D. Dissertation, Yonsei University. 
  18. Lee, J.I., Kim, Y.T. and Cho, Y.-S. (2003). Laboratory experiments on reflection of regular waves due to submerged breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 15(3), 167-175 (in Korean). 
  19. Lin, P. (2004). A numerical study of solitary wave interaction with rectangular obstacles. Coastal Engineering, 51(1), 35-51.  https://doi.org/10.1016/j.coastaleng.2003.11.005
  20. Lin, P. (2006). A multiple-layer ?-coordinate model for simulation of wave-structure interaction. Computers & Fluids, 35(2), 147-167.  https://doi.org/10.1016/j.compfluid.2004.11.008
  21. Madsen, O.S. and Mei, C.C. (1969). The transformation of a solitary wave over an uneven bottom. Journal of Fluid Mechanics, 39(4), 781-791.  https://doi.org/10.1017/S0022112069002461
  22. McCartney, B.L. (1985). Floating breakwater design. Journal of Waterway Port Coastal and Ocean Engineering, 111(2), 304-318.  https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(304)
  23. Park, S.H., Lee, S.O., Jung, T.H. and Cho, Y.-S. (2007). Experimental study on reduction of rup-up height of sloping breakwater due to submerged structure. Journal of the Korean Society of Hazard Mitigation, 7(5), 187-197 (in Korean). 
  24. Seabra-Santos, F.J., Renouard, D.P. and Temperville, A.M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. Journal of Fluid Mechanics, 176, 117-134.  https://doi.org/10.1017/S0022112087000594
  25. Shin, C.H. and Yoon, S.B. (2017). Improvement of wave generation for SWASH model using relaxation method. Journal of Korean Society of Coastal and Ocean Engineers, 29(4), 169-179(in Korean).  https://doi.org/10.9765/KSCOE.2017.29.4.169
  26. Shin, C.H. and Yoon, S.B. (2018). A numerical study on flow in porous structure using non-hydrostatic model. Journal of Korean Society of Coastal and Ocean Engineers, 30(3), 114-122(in Korean).  https://doi.org/10.9765/KSCOE.2018.30.3.114
  27. Smit, P., Zijlema, M. and Stelling, G. (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engineering, 76, 1-16. 
  28. Stelling, G. and Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, 1-23.  https://doi.org/10.1002/fld.595
  29. Stelling, G.S. and Duinmeijer, S.P.A. (2003). A staggered conservative scheme for every froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329-1354.  https://doi.org/10.1002/fld.537
  30. Sutko, A.A. and Haden, E.L. (1974). The Effect of Surge, Heave and Pitch on the Performance of a Floating Breakwter, Floating Breakwaters Conference Papers, University of Rhode Island, Marine Technical Report Series, 24, 21-39. 
  31. Synolakis, C.E. (1986). The Runup of Long Waves. Ph.D. Thesis, California Institute of Technology, Pasadena, California, 91125, 228. 
  32. Synolakis, C.E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545.  https://doi.org/10.1017/S002211208700329X
  33. Tang, C.J. and Chang, J.H. (1998). Flow separation during solitary wave passing over submerged obstacle. Journal of Hydraulic Engineering, 124(7), 742-749. 
  34. Wang, K.-H. (1993). Diffraction of solitary waves by breakwaters. Journal of Waterway Port Coastal and Ocean Engineering, 119(1), 49-69.  https://doi.org/10.1061/(ASCE)0733-950X(1993)119:1(49)
  35. Wang, J., He, G., You, R. and Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Engineering, 158, 1-14.  https://doi.org/10.1016/j.oceaneng.2018.03.064
  36. Western Canada Hydraulic Laboratories Ltd. (1981). Development of a Manual for the Design of Floating Breakwaters. Department of Fisheries and Oceans, Small Craft Harbours Branch. 
  37. Yang, W.S., Cho, W.C. and Park, W.S. (2001). Control of wave screening performance of floating breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 13(3), 230-236 (in Korean). 
  38. Yoon, J.S., Lee, M.K. and Jung, K.H. (2005). Analysis of flow and turbulence structure for rectangular floating breakwater. Journal of the Korean Society of Civil Engineers B, 25(5B), 375-383 (in Korean). 
  39. Yoon, J.S., Son, H.J., Chun, S.Y. and Cho, Y.-S. (2010). Experimental study on hydraulic characteristics and vorticity interactions of floating breakwaters. Journal of The Korean Society of Hazard Mitigation, 10(6), 175-183 (in Korean). 
  40. Zhuang, F. and Lee, J.J. (1997). A viscous rotational model for wave overtopping over marine structure. In Coastal Engineering 1996, 2178-2191. 
  41. Zijlema, M. and Stelling, G.S. (2005). Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Meth. Fluids, 48, 169-197.  https://doi.org/10.1002/fld.821
  42. Zijlema, M. and Stelling, G.S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55, 780-790.  https://doi.org/10.1016/j.coastaleng.2008.02.020
  43. Zijlema, M., Stelling, G. and Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58, 992-1012.  https://doi.org/10.1016/j.coastaleng.2011.05.015