Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.6.779

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT  

Djilali, Nassira (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Mahmoud, S.R. (GRC Department, Applied College, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.42, no.6, 2022 , pp. 779-789 More about this Journal
Abstract
This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.
Keywords
functionally graded materials; geometric non-linearity plate; integral HSDT; nanocomposites; thermal environment;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, Boca Raton: CRC Press.
2 Rahmatnezhad, K., Zarastvand, M.R. and Talebitooti, R. (2021), "Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature", Compos. Struct., 276, 114557. https://doi.org/10.1016/j.compstruct.2021.114557.   DOI
3 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered", Smart Struct. Syst., 27(4), 669-689. https://doi.org/10.12989/sss.2021.27.4.669.   DOI
4 Bakhti, K., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and AddaBedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/SCS.2013.14.4.335.   DOI
5 Mehar, K. and Panda, S.K. (2017), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loading", Int. J. Comput. Methods., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.   DOI
6 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
7 Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int J Solids Struct, 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.   DOI
8 Sahmani, S. and Fattahi, A.M. (2017), "Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction", Europ. Phys. J. Plus., 132(5), 231. https://doi.org/10.1140/epjp/i2017-11497-5.   DOI
9 Attia, M.A. and Abdel Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-2. https://doi.org/10.1016/j.ijengsci.2018.02.005.   DOI
10 Bhaskar, K. and Varadan, T. (2014), Plates: Theories and Applications, John Wiley & Sons.
11 Chikh, A. (2019), "Free vibration analysis of simply supported P-FGM nanoplate using a nonlocal four variables shear deformation plate theory", Strojnicky casopis- J. Mech. Eng., 69(4), 9-24. https://doi.org/10.2478/scjme-2019-0039.   DOI
12 Coda, H.B., Paccola, R.R. and Carrazedo, R. (2017), "Zig-Zag effect without degrees of freedom in linear and non linear analysis of laminated plates and shells", Compos. Struct., 161, 32-50. https://doi.org/10.1016/j.compstruct.2016.10.129.   DOI
13 Esawi, A.M.K and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.   DOI
14 Bachtold, A. (2001), "Logic circuits with carbon nanotube transistors", Science., 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824.   DOI
15 Cuong-Le, T., Nguyen, K. D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
16 Adiyaman. G., Yaylaci. M. and Birinci A., (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.   DOI
17 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.   DOI
18 Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.   DOI
19 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci.., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
20 Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6.   DOI
21 Seilsepour, H., Zarastvand, M. and Talebitooti, R. (2022), "Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core", J. Vib. Control, 10775463211056758. https://doi.org/10.1177/10775463211056758.   DOI
22 Selmi, A. (2020a), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.   DOI
23 Selmi, A. (2020b), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://dx.doi.org/10.12989/sss.2020.26.3.361.   DOI
24 Sweeney, C.B., Lackey, B.A., Pospisil, M.J., Achee, T.C., Hicks, V. K., Moran, A.G., Teipel, R.B., Saed, A.M. and Green, M.J. (2017), "Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating", Sci. Adv., 3(6), e1700262. https://doi.org/10.1126/sciadv.1700262.   DOI
25 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
26 Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale, 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09.   DOI
27 Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. doi.org/10.12989/sem.2019.70.3.269.   DOI
28 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), ,,Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
29 Chang, T., Geng, J. and Guo, X. (2005), "Chirality- and size-dependent elastic properties of single-walled carbon nanotubes", Appl. Phys. Lett., 87(25), https://doi.org/10.1063/1.2149216.   DOI
30 Chou, T.W. (2005), Microstructural Design of Fiber Composites, Cambridge University Press.
31 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
32 Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.   DOI
33 Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R. E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature., 384(6605), 147-150. https://doi.org/10.1038/384147a0.   DOI
34 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.   DOI
35 Jalal, M., Moradi-Dastjerdi, R. and Bidram, M. (2018), "Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites", J. Comput. Des. Eng., 6(2), 209-223. https://doi.org/10.1016/j.jcde.2018.05.003.   DOI
36 Elliott, J.A., Sandler, J.K.W., Windle, A.H., Young, R.J. and Shaffer, M.S.P. (2004), "Collapse of single-wall carbon nanotubes is diameter dependent", Phys. Rev. Lett., 92(9), https://doi.org/10.1103/physrevlett.92.095501.   DOI
37 Fukuda, H. and Kawata, K. (1974), "On Young's modulus of short fibre composites", Fibre Sci. Technol., 7(3), 207-222. https://doi.org/10.1016/0015-0568(74)90018-9.   DOI
38 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.   DOI
39 Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/ANR.2018.6.4.299.   DOI
40 Darvishgohari, H., Zarastvand, M., Talebitooti, R. and Shahbazi, R. (2021), "Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers", J. Sandwich Struct. Mater., 23(5), 1453-1480. https://doi.org/10.1177/1099636219896251.   DOI
41 Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/s0266-3538(01)00094-x.   DOI
42 Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68, 165401. https://doi.org/10.1103/physrevb.68.165401.   DOI
43 Jin, Y. and Yun, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/s0266-3538(03)00074-5.   DOI
44 Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.   DOI
45 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58.   DOI
46 Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature., 363, 603-605. https://doi.org/10.1038/363603a0.   DOI
47 Kaczkowski Z. (1968), Plates-Statistical Calculations, Warsaw: Arkady.
48 Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021), "An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.   DOI
49 Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A., (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.   DOI
50 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.   DOI
51 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.   DOI
52 Yaylaci, E. U., Yaylaci, M., Olmez, H., & Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.000.   DOI
53 Lau, K.T., Gu, C., GH, Ling H.Y. and Reid, S.R. (2004), "Stretching process of single- and multiwalled carbon nanotubes for nanocomposite applications", Carbon., 42, 426-428. https://doi.org/10.1016/j.carbon.2003.10.040.   DOI
54 Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. http://dx.doi.org/10.12989/cac.2020.26.1.031   DOI
55 Kiani, Y. (2017), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Thermal Stresses., 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.   DOI
56 Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Thermal Stresses., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.   DOI
57 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://dx.doi.org/10.12989/sem.2019.69.4.427.   DOI
58 Mars, J., Koubaa, S., Wali, M. and Dammak, F. (2017), "Numerical analysis of geometrically non-linear behavior of functionally graded shells", Latin Amer. J. Solids Struct., 14(11), 1952-1978. https://doi.org/10.1590/1679-78253914.   DOI
59 Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.   DOI
60 Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001.   DOI
61 Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/SCS.2019.32.6.821.   DOI
62 Mallek, H., Jrad, H., Algahtani, A., Wali, M. and Dammak, F. (2019), "Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers", Comput. Methods Appl. Mech. Eng., 347, 679-699. https://doi.org/10.1016/j.cma.2019.01.001.   DOI
63 Oner E., Yaylaci M. and Birinci A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.000.   DOI
64 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
65 Dresselhaus, M.S. and Avouris, P. (2001), "Introduction to carbon materials research", Carbon Nanotubes1-9. https://doi.org/10.1007/3-540-39947-X_1.   DOI
66 Zhang, C.L. and Shen, H.S. (2006a), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904. https://doi.org/10.1063/1.2336622.   DOI
67 Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.   DOI
68 Nguyen, V.T., Nguyen, D.K., Ngo, D.T., Phuong, T. and Nguyen, D.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Thermal Stresses., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.   DOI
69 Panc, V. (1975), Theories of Elastic Plates, Leyden: Springer Science&Business Media.
70 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
71 Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct. 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.   DOI
72 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053.   DOI
73 Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021), "Acoustic insulation characteristics of shell structures: A review", Archive. Comput. Meth. Eng., 28(2), 505-523. https://doi.org/10.1007/s11831-019-09387-z.   DOI
74 Zghal, S., Frikha, A. and Dammak, F. (2018), "Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement", Eng. Struct., 158, 95-109. https://doi.org/10.1016/j.engstruct.2017.12.017.   DOI
75 Zhang, C.L. and Shen, H.S. (2006b), "Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation", Carbon, 44(13), 2608-2616. https://doi.org/10.1016/j.carbon.2006.04.037.   DOI
76 Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.   DOI
77 Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.   DOI
78 Rezaiee-Pajand, M., Mokhtari, M. and Hozhabrossadati, S.M. (2019), "Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams", Mech. Based Des. Struct. Machines., 1-22. https://doi.org/10.1080/15397734.2019.1596129.   DOI