DOI QR코드

DOI QR Code

Effects of 3-D Fracture Tensor Parameters on Deformability of Fractured Rock Masses

삼차원 절리텐서 파라미터가 절리성 암반의 변형특성에 미치는 영향

  • Ryu, Seongjin (Industry University Cooperation Foundation, Pukyong National University) ;
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University)
  • 류성진 (부경대학교 산학협력단) ;
  • 엄정기 (부경대학교 에너지자원공학과)
  • Received : 2021.02.10
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

The effects of directional fracture tensor components and first invariant of fracture tensor on deformation moduli and shear moduli of fractured rock masses is analyzed based on regression analysis performed between 3-D fracture tensor parameters and deformability of DFN blocks. Using one or two deterministic joint sets, a total of 224 3-D discrete fracture network (DFN) cube blocks were generated with various configurations of deterministic density and probabilistic size distribution. The fracture tensor parameters were calculated for each generated DFN systems. Also, deformability moduli with respect to three perpendicular direction of the DFN cube blocks were estimated based on distinct element method. The larger the first invariant of fracture tensor, the smaller the values for the deformability moduli of the DFN blocks. These deformability properties present an asymptotic pattern above the certain threshold. It is found that power-law function describes the relationship between the directional deformability moduli and the corresponding fracture tensor components estimated in same direction.

본 연구는 삼차원 절리텐서 파라미터와 DFN(discrete fracture network) 블록의 변형특성 간의 상관성 분석을 수행하여 절리텐서의 방향성분 및 일차불변량이 절리성 암반의 변형계수 및 전단탄성계수에 미치는 영향을 평가하였다. 확정적 방향성을 갖는 1~2개의 절리군을 사용하여 절리의 빈도 및 길이분포의 변화에 따라 생성한 총 224개의 DFN 블록에 대하여 절리텐서 파라미터가 산정되었다. 또한, 정육면체 DFN 블록에 대하여 개별요소법을 활용하여 서로 직교하는 세 방향으로 변형특성이 추정되었다. 절리텐서의 일차불변량이 증가할수록 변형계수 및 전단탄성계수는 대체로 저감되는 양상을 나타내지만, 감소폭이 줄어들어 일차불변량이 특정 기준값을 상회하면 변형계수 및 전단탄성계수는 거의 일정한 값을 유지하였다. 삼차원 DFN 블록에 대한 지향적 변형특성은 대응하는 방향의 절리텐서성분과 멱함수의 강한 상관관계를 도출하였다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2018R1D1A1B07047982)

References

  1. Bieniawski Z.T., 1978, Determining rock mass deformability: experience from case histories, Int. J. Rock Mech. Min. Sci., 15, 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  2. Bieniawski, Z. T., 1968, The effect of specimen size on compressive strength of coal, Int. J. Rock Mech. and Min. Sci., 5, 321-335. https://doi.org/10.1016/0148-9062(68)90004-1
  3. Bieniawski, Z.T. and Van Heerden, W.L., 1975, The significance of in-situ tests on large rock specimens, Int. J. Rock Mech. and Min. Sci., 12, 101-113. https://doi.org/10.1016/0148-9062(75)90004-2
  4. Castelli M., Saetta V. and Scavia C., 2003, Numerical study of scale effects on the stiffness modulus of rock masses, Int. J. Geomech., 3, 160-169. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(160)
  5. Fu P. and Dafalias Y.F., 2015, Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials. Int. J. Soilds Struct. 63, 68-81. https://doi.org/10.1016/j.ijsolstr.2015.02.041
  6. Hardin E.L., Barton N.R., Lingle R., Board M.P. and Voegele, M.D., 1982, A heated flaljack test to measure the thennomechanical and transport properties of rock masses, Office of Nuclear Waste Isolation, Columbus, Ohio, 203p.
  7. Harrison J.P. and Hudson J.A., 1997, Engineering rock mechanics-an introduction to the principles, Oxford, Elsevier, 444p.
  8. Itasca, 2016, 3DEC(v.5.2) User's Guide, Itasca Consulting Group, Inc.
  9. Kanatani K.I., 1984, Distribution of directional data and fabric tensors. Int. J. Eng. Sci., 22, 149-164. https://doi.org/10.1016/0020-7225(84)90090-9
  10. Kulatilake P.H.S.W., Ucpirti H., Wang S., Radberg G. and Stephansson O., 1992, Use of the distinct element method to perform stress analysis in rock with non-persistent joints to study the effect of joint geometry parameters on the strength and deformability of rock masses, Rock Mech. and Rock Eng, 25, 253-274. https://doi.org/10.1007/BF01041807
  11. Laghaeia M., Baghbanana A., Hashemolhosseinib H. and Dehghanipoodeha M., 2018, Numerical determination of deformability and strength of 3D fractured rock mass, Int. J. Rock Mech. Min. Sci., 110, 246-256. https://doi.org/10.1016/j.ijrmms.2018.07.015
  12. Lei Q, Latham J.P. and Tsang C.F., 2017, The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks, Computers and Geotechnics 85, 151-176. https://doi.org/10.1016/j.compgeo.2016.12.024
  13. Li X. and Li X.S., 2009, Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech., ASCE., 135, 641-656. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:7(641)
  14. Min KB. and Jing L. 2003, Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method, Int. J. Rock Mech. Min. Sci. 40, 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
  15. Min K.B. and Thoraval A., 2012, Comparison of two- and three-dimensional approaches for the numerical determination of equivalent mechanical properties of fractured rock masses, Tunnel and Underground Space, 22, 92-105.
  16. Oda, M., 1982, Fabric tensor for discontinuous geologic materials, Soils and Foundations, 22, 96-108. https://doi.org/10.3208/sandf1972.22.4_96
  17. Rothenburg L. and Bathurst R.J., 1992, Micromechanical features of granular assemblies with planar elliptical particles, Geotechnique, 42, 79-95. https://doi.org/10.1680/geot.1992.42.1.79
  18. Ryu S.J. and Um J.G., 2020, Effect of joint geometry on anisotropic deformability of jointed rock masses, Econ. Environ. Geol., 53, 271-285. https://doi.org/10.9719/EEG.2020.53.3.271
  19. Ryu S.J., Um J.G. and Park J.Y., 2020, Estimation of strength and deformation modulus of the 3-D DFN system using the distinct element method, Tunnel and Underground Space, 30, 15-28. https://doi.org/10.7474/TUS.2020.30.1.015
  20. Satake M., 1982, Fabric tensor in granular materials. in Vermeer P.A. and Luger H.J. (eds.), Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, A.A. Balkema, Rotterdam, 63-68.
  21. Um J.G. and Han J.S., 2017, Analysis of relationship between 2-D fabric tensor parameters and hydraulic properties of fractured rock mass, Tunnel and Underground Space, 27, 100-108. https://doi.org/10.7474/TUS.2017.27.2.100
  22. Wang S. and Kulatilake P.H.S.W., 1993, Linking between joint geometry models and a distinct element method in three dimensions to perform stress analyses in rock masses containing finite size joints, Jpn. Soc Soil Mech. and Found Eng., 33, 88-98.