• Title/Summary/Keyword: deflection analysis

Search Result 1,712, Processing Time 0.03 seconds

Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection (복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法))

  • Paik, Jeom-K.;Kim, Gun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF

A Case Study on GNSS Based Deflection and Dynamic Characteristics Monitoring Analysis for SeoHae Bridge

  • Lee, Jae Kang;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.389-404
    • /
    • 2017
  • The main purpose of this presented investigation is to build up the BHMS based on GNSS. This proposed monitoring system can conduct the deflection and dynamic characteristics analysis by using only GNSS positioning solution. The general bridge monitoring system being operated recently is composed of a combination of various sensors that are able to conduct deflection monitoring and dynamic characteristics monitoring analysis at the same time. However, GNSS based BHMS has the unique procedure in terms of data analysis. In the other words, GNSS positioning solution is firstly applied to deflection monitoring analysis then, this deflection analysis can be sequentially reflected in the dynamic characteristics. Unfortunately, the adjustment result of GNSS positioning solution estimated through various options and conditions and the process of monitoring analysis has not been fulfilled systematically. This means that different results or analysis value are presented according to the methodology and officers. Most of researches have been focusing on deflection monitoring analysis and some investigation regarding to dynamic characteristics is recently introduced. Moreover, it is not still reported the systematic investigation with regards to proper filtering and analysis methodology. This study was carried out based on a large amount of data, from this, various variables not reported yet are actively considered. Therefore, specific software for both monitoring analysis have been developed.

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

The Flexibility Estimation of Alignment for Propulsion Shaft System using the Approximated Hull Deflection Curve (선체 변형 근사곡선을 이용한 추진축계 정렬의 유연성 평가)

  • Sun, Jin-Suk;Lee, Yong-Jin;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, based on the measured data of hull deflection, an approximated hull deflection curve is drawn using reverse analyzed hull deflection data and the estimation method for flexibility analysis of shaft alignment is proposed by use of the approximate hull deflection curve. Generally an offset value of after stern tube bearing is a datum point with an fore stern tube bearing however the shaft alignment has a tendency which is able to get higher flexibility if the shafting system has the deflection value from after stern tube bearing as reference to bottom direction according to results of on this study. By applying this result of study, the shaft alignment for next similar ships will be able to estimate how to follow the hull deflection and how to be influenced by hull deflection at shaft alignment analysis state using the approximated hull deflection curve.

Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel (원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석)

  • 권영주;김재희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure (Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구)

  • Lee, Hee-Joong;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형 시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.99-102
    • /
    • 2008
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube (중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발)

  • Shim, Do-Jun;Huh, Nam-Su;Park, Bo-Kyu;Chang, Yoon-Suk;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.