• Title/Summary/Keyword: decoupling control

Search Result 261, Processing Time 0.024 seconds

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

A Discrete State-Space Control Scheme for Dynamic Voltage Restorers

  • Lei, He;Lin, Xin-Chun;Xue, Ming-Yu;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • This paper presents a discrete state-space controller using state feedback control and feed-forward decoupling to provide a desirable control bandwidth and control stability for dynamic voltage restorers (DVR). The paper initially discusses three typical applications of a DVR. The load-side capacitor DVR topology is preferred because of its better filtering capability. The proposed DVR controller offers almost full controllability because of the multi-feedback of state variables, including one-beat delay feedback. Feed-forward decoupling is usually employed to prevent disturbances of the load current and source voltage. Directly obtaining the feed-forward paths of the load current and source voltage in the discrete domain is a complicated process. Fortunately, the full feed-forward decoupling strategy can be easily applied to the discrete state-space controller by means of continuous transformation. Simulation and experimental results from a digital signal processor-based system are included to support theoretical analysis.

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis (협조로보트 시스템의 동적 Decoupling과 안정도연구)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi Jin-Young;Lee Kwang-Hyun;Lee Jae-Sung;Kim Sang-Hoon;Yang Hyunseok;park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.229-234
    • /
    • 2005
  • A novel method to measure the interaction movement, focusing direction and tracking direction in an optical pick-up, is proposed and the decoupling control for it is discussed. First, the basic principle of the coupline analysis method using back electromotive farce is introduced. Second, the interaction analysis between focusing direction and tracking direction fur commercial slim type actuator is performed using the proposed method. Finally, the coupling analysis and decoupling control for the slim type optical pick-up are discussed. From the brief simulation, we shows that the effectiveness and validity of the proposed method.

  • PDF

Trajectory control of a manipulator by the decoupling sliding mode control (비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어)

  • Nam, Taek-Kun;Roh, Young-Oh;Ahn, Byung-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.702-707
    • /
    • 2004
  • In this paper, we proposed the decoupling VSS controllers for a trajectory control of a two degrees of freedom SCARA type manipulator. We decoupled the position and velocity of a manipulator tip by using a nonlinear error functions. The reference inputs of the controller can be decided directly from the desired position and velocity. Simulation result is provided to verity the effectiveness of the proposed control scheme.

  • PDF

Sampled Input-output Decoupling of The Nonlinear Systems (비선형 시스템의 샘플링을 전제한 입출력 디커플링)

  • 김용민;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1247-1258
    • /
    • 1995
  • Input-output decoupling is well-known to be effective in the control of the nonlinear systems. This paper points out some problems of this technique in applications, and obtains a new digital input-output decoupling feedback law by using the inherent structure of the system. The effectiveness (accuracy) of our new control technique are confirmed by simple computer simulations. Finally, a digital compensator is also designed. The problems we study are of importance in the field of nonlinear control of robots, aerospace navigation, and vehicular control. The methodology to be employed involves both algebraic and geometric aspects of the systems.

  • PDF

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Lateral Vehicle Control Based on Active Flight Control (능동비행제어기술에 기반한 자동차 횡방향 제어)

  • Seo Young-Bong;Duan Guang Ren;Choi Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle(CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to commend a chosen variable without significant motion change in other specified variables. The analysis techniques fur decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling(i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Noninteracting Feedbeck Control of Multivariable Nonlinear Systems (다변수 비선형시스템의 noninteracting 되먹임 제어)

  • 하인중;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.501-513
    • /
    • 1987
  • Conditions for achieving noninteraction in nonlinear multivariable systems via the decomposition of state space are well established. The main contribution of this paper is to fully characterize the class of decomposing control laws. The characterization corresponds to a family of simple control laws which are applied to a standard decomposed system(SDS). The SDS is similar to the decomposed systems of Isidori, Krener, Gori-Giorgi, and Monaco but has a finer structure. The finer structure parallels the one used by Gilbert for linear systems. A weaker form of noninteraction, based on input-output behaviour, is decoupling. Some connections between decomposition and decoupling are also established. An example illustrating the importance of the results is given.