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Abstract

This paper presents a new control scheme for decoupling the dynamics of two coordinating

robot manipulators. A simple full-state feedback scheme with configuration dependent gains

can be devised to decouple the system dynamics such that the dynamics of each arm and that

of an object held by the two arms is independent of one another. A condition for stability is

shown. The advantage of the proposed scheme is that the same control scheme can be applied

both for the closed kinematic chain(object — grasping) case and open kinematic chain(no

object — grasping) case.

1. Introduction

Many tasks arise in assembly, repair and
inspection that require multiple robot manipu-
lators to perform in a coordinated manner. A
multitude of challenging research issues arise
from multi — arm coodinated control” . One of
the fundamental problems that control design-
ers face is the fact that a dual - arm robotic sy-

stem manipulating a common load is described
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by a closed kinematic chain, resulting in sys-
tem dynamic constraints and a reduction in the
degrees of freedom®. Also, Ahmad and Luo
described a technique for coordinated motion
control of multi - arm manipulators for welding
applications”. There, a redundant manipulater
with seven degree - of - freedom is required to
weld on specific trajectory along a table. Con-
straints on singular conditions and motion lim-
its are incorporated into a performance mea-
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sure to be optimized. The approach requires
off - line path planning and, in effect, uses a
master/slave control scheme. Carignan and
Akin® transformed the dual — arm problem to a
hierarchial control structure whereby a com-
plete minimization is performed on a reduced -
order model of the system in order to construct
the payload trajectory ; then a parameter mini-
mization is done to find the force distribution of
the arms on the payload. This approach yields
a suboptimal solution but incorporates the dyn-
amics and control issues into nonconflicting
performance measures.

Seraji® develops an adaptive position/force
control appoach to the dual — arm problem. By
employing an adaptive PID struture, knowl-
edge of the mathematical model of the system
is not required. The coupling effects between
the manipulators, through the common pay-
load, are modelled as distubances in the posi-
tion and force equations which are then com-
pensated for in the adaptation rule. Ro and
Youcef - Toumi'" present a leader - follower
control approach, but with a reference model
structure. The leader manipulator is directed
according to a presribed reference model sys-
tem while the follower arm follows via interact-
ing force feedback. Robustness issues'” of the
control scheme in the presence of actuator non-
linearities and model uncertainties as well as
bounded disturbances are presented.

In this paper, an issue of dynamic decoupling
robot arms manipulating a common object is
addressed. The object is assumed to be rigid
and rigidly held by the two robot arms. Depen-
ding on the arm configuration and the speed
with which the object is manipulated, the dyna-
mic coupling between two robot arms and that
of the object can be negligibly small and consi-
titute a significant portion of the overall dyna-

mics, In this paper, a new control scheme is int-
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roduced which incorporates a decoupling condi-
tion into the two - arm coordination problem.
Stability of the approach in a linear sense is
guaranteed, while the robustness of the app-
roach can be obtained in a manner similar to

what is shown in reference'?.
2. Two — arm Dynamics

The equations of motion for two robot arms

grasping an object can be expressed as the fol-

lowing :
H1q1+Cl(quq1):T1+J1TFl (]_a)
Hygy+C2Aqe,g9)=To+Jy'Fy (1b)
Mo+ Colxy, %)= — L,"F, — L,"F, (1c)

where ¢, and g, are nx 1 joint angle vectors
for arms 1 and 2 ; x, is the n x 1 vector repre-
senting the position and orientation of the
object center in the inertial space ; T, and T,
are the n x 1 joint torque vectors for arms 1 and
2 ; H1 and H2 are the mass matrices of size n X
n associated with arms 1 and 2 ; M, is the
mass matrix associated with the object ; C, and
C, are nonlinear force vectors of size n X1,
respectively ; and JJ, and J, are the nxn Jaco-
bian matrices of arms 1 and 2. Forces F(C,)
represent n X 1 vectors of forces and moments
at the interaction between the center of the
object and the interaction between arm 1l(arm
2) and the object, and n xn matrices L, and L,
repersent transformations associated with
finite lengths between the center of the object
and the interaction points. Similar expressions
for the dynamics of two - arm systems have
been used®'™. Above expression can be rewrit-

ten in a matrix form as
Mx)i=u - Clx, )+ G(x)F (2)

where
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q, T, C, . where
1
x=|g, [, u=|T2|,C=|Cy ’F:{F } P=M"-Gle,M G} ‘oM ']
2 X X
xo 0 Co R=M"'Glo,M 'G} 'a,
Hy 0 0 J' 0
M=o H, o .G=| o 77 a4n)d a_r;md ¢, are 2nx 33 pzrtials (:'constraint
(4) with respect to x and that with respect to
0 0 M, -L" -L, . P . .p
time, respectively. The above equations of
where u is control input vector. Eq.(2) states motion holds whenever («,M 'G) ! exists.
that there are 5n unknowns, x and F, with 3n
equations. However, 2n x 1 vector F can be ex- 3. A Decoupling Control Scheme
pressed as functions of other 3n unknowns using via State Feedback
the kinematic constraints imposed on the sys-
tem due to rigid grasping, as shown in [8]. The Here, we propose a state feedback control
kinematic constraints due to the closed - kine- scheme that will try to “decouple” as much as
matic chain formed by grasping can be possible the dynamics of each arm from the
expressed by 2n algebraic equations as other as well as from that of the object we need
to diagonalize two 3n X 3n matrices, namely, P
xp=ri(g;)=ryqs) (3) : :
and Q. For this purpose, we consider
where r, and r, represent the object position ) .
. 0 . u= - K(x¥ - Ky(x)x+ C(x, x) (8)
and orientation in arm 1 and 2 cooordinates,
respectively. Equation (3) can be rewritten as where K, and K, are feedback gain matrices
and feedforward term Care defined as
r(g)—xo
alx) = =0 (4) )
r(gy)~xo k(g ki2(q;) kulxo)
where o represents the closed kinematic Ki=| knlqy) kzz(()qz) kas (x0) |,
chain, and is always equal to 2n x 1 null vector L0 0
- '} -
for all the time. The force F can be expressed as gnlq) 8l &ulxd| &
a function of known variables. To do this, first K>=|8:(q) 82(q:) &xlx) K C=|é
taking the second derivative of constraints (4) 0 0 0 0

with respect to time yields . .
The feedforward term C represents the esti-

a. x+a,x=0 (5) mates of the nonlinear Coriolis, centrifugal,

o . and gravity forces. We note that the bottom
Substituting Eq. (2) to the resulting expres- .
. . ] row has to be zero because there is no control
sion (5) and solving for F yield . .
available for the object. Each element, & or g,

a, 2+a, M(x) (u-Clx, )+ Gx)FH=0 (6) is an nxn matrix of feedback gains that is

. . dependent on the configuration of the arms. By
Hence, expressing Eq. (6) with respect to F . .
o . . the control action shown in Eq.(8) to the two -
and substituting Eq. (2) yields the resulting . i
] arm system of (7), the resulting equations of
expresston of two — arm dynamics as .
motion become

t=P(u - Clx, %)) - R 7
A=Pu -k, 2) - Bx ( i+ [PK,(x)+R] 2+ PKy{x)x=0 9)

(39)
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where if we can measure C exactly, C= C is
satisfied. Looking at the above expression, the
decoupling of the dynamics of each arm can be
achieved if we can diagonalize the coefficient
matrices associated with the velocity vector
and the position vector terms. Qur prime con-
cern is to decouple the dynamics between the
two arms. This can be achieved by choosing the
off - diagonal gain elements &y, &y, 815, and g4,
such that the 12 - th element and 21 - th ele-
ment of the coefficient matrics become null,
that is,

(PK,+R);;=(PK,+R)y =0

and (PK,);,=(PK,)y; =0 (10
where

—pu(‘h) Py piglxe)
P=|py(q) Pnlqy) pylxe)

_p:n((h) Pun(qy) pylgy)

rrn(ql) rlZ(Qz) ri{xo)
R= rzl(ql) r22(q2) raz{xg)

Lrai(g) ralgy) ralgy)

For this particular case, the following choice
of gain elements will satisfy the condition
shown in Eq.(10) :

Rip=—p1 1Pkt

kyy= = Py ook +ral (11a)
812= — P11 'D1gkyy, and
&= ~ Py 'Patky (11b)

where p,; and r;, represent the ij - th element
of P and R, respectively. Similarly, the decou-
pling of the object dynamics from the first arm
dynamics can be realized by choosing %, &4,

841, and g4, elements such that

(PK,+R);3=(PK,+R)3;==0 and

(PKyhy=(PK,)3 =0 (12)

The conditions in (10) and (12) can not be
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simultaneously satisfied because there is no
control associated with the object ; this is rep-
resented by the null row vectors for the last
rows of K; and K,. The stability of the overall
system as well as the desired performance of
esch arm depends on choosing appropriate
gains for diagonal elements, %, and g, such
that the individual second order matrix equa-
tions have stable coefficients. One complication
with the above approach can result because of
the fact that these gains are configuration
dependent.

The approach shown above is useful in that
we can define the desired dynamics of each arm
independent of the other and of the object.
Also, it is particularly useful because the con-
trol scheme can be readily adapted for control-
ling the arms separately in the case of open
kinematic chain (no object — graspong mode). In
case the robot arms are maneuvering in space
independently, the gains for the off — diagonal
elements of K, can be set to zero. If at some
point an object is detected and the arms start
manipulating the object, the gains of off - diag-
onal elements can be obtained according to
(10). This simple but very efficient control fea-
ture can be essential in space assembly and
repair, or even in factory assembly, where the
operating mode of dual - arm may have to
change frequently from the “object — grasping”

mode to “no object — grasping” mode.
4, Stability Condition and Analysis

In this section, general conditions to guaran-
tee the stability of the closed - loop two — arm
dynamic system are discussed. By the proposed
control action in (11,12), Eq.(9) can be express-

ed as 3n x 1 matrix equation

P+ K+ Kx=Qlx, ) (13)
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where K; and K, are the 3n x 3n diagonal
matrices and @(x, x) is coupling term. The
dynamics of each arm is assumed to be affected
by only the coupling forces instead of other
forcing terms such as compensation errors or
model uncertainties, etc. Under this condition,
a stability robustness analysis is shown with
the assumption.

Suppose that

(i) the function @(x, %) including coupled
forces and input disturbances is upper bounded
for T-T,<o as

Il QGx, &) I <A (flxll + 11 21) (14)

uniformly in t where an appropriate A,>0 is
constant.

With assumption (i), |[|x| —0 and || x || —0
for all sufficiently large t.

4.1 Proof of Stability

For the proof of the stability of the two — arm
system, Eq.(13) can be expressed as

2=y, 3= - Kx-Ky+Q(x,%) (15)

Also, a Lyapunov function V=V(x, y) is cho-

sen as in [16]

2V=<y+Kpy+Kx>+<yy>+2<Kx x>
(16)

Here the Lyapunov function V(x, y) is a con-
vex function and positive scalar because the
matrix K, is defined as positive definite. In
addition to the positive quantity of the Lya-
punov, an estimate for \./:*&EV(x(t), y(t)) corre-
sponding to any solution (x, y) of Eq.(15) is
required. For convenience, @(x, x) is expressed
as Q(.). Differentiating the Lyapunov function
of Eq.(16) yields

V=<y+Kux,-Ky - Kx+Q()+Ky>
+<y,~ Ky -Kx+Q()> +2<Kxy>

41)

41

=<K, Kx> - <y, Ky>+<2y+Kg, Q>
(17)

The estimate of the first term in the right
hand side of Eq.(17) is

<K;x,K,x>=<K;K,xx>2k, [ x|

SWEIE (18)

where A, and A, are the least eigenvalues of
matrix K, and K, respectively. Also, 1,,=
Aqgh,>0 because K; and K, are defined as diag-
onal positive definite matrices. In a similar

way, the second term of Eq.(17) is estimated as

<y, Kiy>=<Kay, y> =k llv | * (19)

Applying Schwarz's inequality to estimate
the remaining term in the expression V in
Eq.(17) yields

| <2y+K;x, Q> <hy(llxll + lly )11 QOI
(20)

for some constant A;>0 whose magnitudes
can be estimated with (14) as

| <2y+K;x, Q> | <yl + Iy )
QU <ag(llxil +Hlyll) A
(el + ly D2yl x il 2+ Iy 1D
(21D

where A, is the largest eigenvalue of K, ma-
trix such that A;=max(2, &,,). Thus, the
inequality is achieved by putting all the esti-
mates of the various terms in Eq.(18,19) into
the expression forV in Eq.(17) as

V<= Oy =20 A9 1% ]2 = O — 20k [y | 2
(22)

Hence, if X, is defined as

1
A< ——é‘min(}\dp)‘B Y )‘dp}‘f; g

4,

1
= ?min(kp, 1) )\dp}\i; !
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which is a sufficient condition for V to become
negative semi— definite. In Eq.(22), with the

sufficient condition,

V<= 200 lxll 2+ iy 12

where i;= min(i,, -

(23)
Qiyhy, Ay~ 2hohy).
Because V<< 0, the above inequality implies that
lx | —0and ||y —»0as t—o

5. Conclusion

A decouping control scheme for dual - arm
coordination is devised. The scheme decouples
the dynamics of each arm from the other and
that of the object, and utilizes a straight for-
ward full - state feedback with configuration
dependent gains. Based on the closed - loop
two —arm system, a stability condition is
derived and the stability is studied. In the
actual implementation, a some form of realiz-
ing the configuration dependent gains have to
be further investigated along with the issues of

stability and performance robustness.
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