• Title/Summary/Keyword: deconvolution

검색결과 282건 처리시간 0.029초

전역통과 시스템에 대한 Deconvolution 필터링 기법 (Deconvolution Filtering Method for All-pass Systems)

  • 김성진
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1025-1031
    • /
    • 2006
  • 본 논문에서는 FIR 근사를 기반으로한 전역통과 시스템에 대한 deconvolution 필터링 기법을 제안한다. 제안한 기법은 안정한 non-causal deconvolution 필터를 FIR 근사에 의해 안정한 causal deconvolution 필터로 변환시키는 것이다. 본 논문에서 보인바와 같이 전역통과시스템에 대한 deconvolution 필터의 임펄스 응답은 전역통과 시스템 자체의 임펄스 응답의 거울 영상(mirror image) 임을 알 수 있다. 이와 같이 전역통과 시스템에 대한 임펄스 응답과 그 시스템의 deconvolution 필터에 대한 임펄스 응답의 대칭성 때문에, 제안한 기법은 전역 통과 필터의 차수에 상관없이 동일하게 적용할 수 있다. 제안한 기법의 성능을 보이기 위하여 1차, 2차 및 400차의 전역통과 시스템에 대한 컴퓨터 시뮬레이션 결과를 포함한다.

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

A Comprehensive Overview of RNA Deconvolution Methods and Their Application

  • Yebin Im;Yongsoo Kim
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.99-105
    • /
    • 2023
  • Tumors are surrounded by a variety of tumor microenvironmental cells. Profiling individual cells within the tumor tissues is crucial to characterize the tumor microenvironment and its therapeutic implications. Since single-cell technologies are still not cost-effective, scientists have developed many statistical deconvolution methods to delineate cellular characteristics from bulk transcriptome data. Here, we present an overview of 20 deconvolution techniques, including cutting-edge techniques recently established. We categorized deconvolution techniques by three primary criteria: characteristics of methodology, use of prior knowledge of cell types and outcome of the methods. We highlighted the advantage of the recent deconvolution tools that are based on probabilistic models. Moreover, we illustrated two scenarios of the common application of deconvolution methods to study tumor microenvironments. This comprehensive review will serve as a guideline for the researchers to select the appropriate method for their application of deconvolution.

A Note on Deconvolution Estimators when Measurement Errors are Normal

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.517-526
    • /
    • 2012
  • In this paper a support vector method is proposed for use when the sample observations are contaminated by a normally distributed measurement error. The performance of deconvolution density estimators based on the support vector method is explored and compared with kernel density estimators by means of a simulation study. An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.

노이즈 억제를 위한 개선된 Richardson-Lucy deconvolution (A noise-suppression method for Richardson-Lucy deconvolution)

  • 김정환;이민정;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.53-55
    • /
    • 2014
  • 본 논문에서는 deconvolution 알고리즘 중에 하나인 Richardson-Lucy deconvolution 의 개선된 알고리즘을 제시한다. Richardson-Lucy deconvolution 의 단점인 반복횟수가 증가할수록 노이즈도 같이 증폭되는 현상을 소개하고 이를 개선하기 위해 기존 알고리즘에 전, 후처리 필터를 이용하여 노이즈 증폭을 억제한다. 또한 다른 노이즈 증폭을 억제하는 알고리즘과 제안된 알고리즘의 비교를 통해서 제안된 알고리즘의 성능을 보여준다.

  • PDF

Blind Deconvolution for Microwave Scanning Imaging Radiometer

  • Park, Hyuk;Kim, Sung-Hyun;Choi, Jun-Ho;Kim, Yong-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.673-675
    • /
    • 2003
  • The image restoration algorithm for microwave imaging radiometer is proposed. A blind deconvolution method was proposed. A point spread function was identified and three deconvolution schemes were employed, Wiener filtering, Lucy- Richardson deconvolution, and Maximum Likelihood blind deconvolution. The experimental data is illustrated with restored image.

  • PDF

A Support Vector Method for the Deconvolution Problem

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.451-457
    • /
    • 2010
  • This paper considers the problem of nonparametric deconvolution density estimation when sample observa-tions are contaminated by double exponentially distributed errors. Three different deconvolution density estima-tors are introduced: a weighted kernel density estimator, a kernel density estimator based on the support vector regression method in a RKHS, and a classical kernel density estimator. The performance of these deconvolution density estimators is compared by means of a simulation study.

An Adaptively Segmented Forward Problem Based Non-Blind Deconvolution Technique for Analyzing SRAM Margin Variation Effects

  • Somha, Worawit;Yamauchi, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.365-375
    • /
    • 2014
  • This paper proposes an abnormal V-shaped-error-free non-blind deconvolution technique featuring an adaptively segmented forward-problem based iterative deconvolution (ASDCN) process. Unlike the algebraic based inverse operations, this eliminates any operations of differential and division by zero to successfully circumvent the issue on the abnormal V-shaped error. This effectiveness has been demonstrated for the first time with applying to a real analysis for the effects of the Random Telegraph Noise (RTN) and/or Random Dopant Fluctuation (RDF) on the overall SRAM margin variations. It has been shown that the proposed ASDCN technique can reduce its relative errors of RTN deconvolution by $10^{13}$ to $10^{15}$ fold, which are good enough for avoiding the abnormal ringing errors in the RTN deconvolution process. This enables to suppress the cdf error of the convolution of the RTN with the RDF (i.e., fail-bit-count error) to $1/10^{10}$ error for the conventional algorithm.

A Technique to Circumvent V-shaped Deconvolution Error for Time-dependent SRAM Margin Analyses

  • Somha, Worawit;Yamauchi, Hiroyuki;Yuyu, Ma
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권4호
    • /
    • pp.216-225
    • /
    • 2013
  • This paper discusses the issues regarding an abnormal V-shaped error confronting algebraic-based deconvolution process. Deconvolution was applied to an analysis of the effects of the Random Telegraph Noise (RTN) and Random Dopant Fluctuation (RDF) on the overall SRAM margin variations. This paper proposes a technique to suppress the problematic phenomena in the algebraic-based RDF/RTN deconvolution process. The proposed technique can reduce its relative errors by $10^{10}$ to $10^{16}$ fold, which is a sufficient reduction for avoiding the abnormal ringing errors in the RTN deconvolution process. The proposed algebraic-based analyses allowed the following: (1) detection of the truncating point of the TD-MV distributions by the screening test, and (2) predicting the MV-shift-amount by the assisted circuit schemes needed to avoid the out of specs after shipment.

  • PDF

탄성파 반사 신호 향상 (Enhancing seismic reflection signal)

  • 도안 후이 히엔;장성형;김영완;서상용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.606-609
    • /
    • 2008
  • Deconvolution is one of the most used techniques for processing seismic reflection data. It is applied to improve temporal resolution by wavelet shaping and removal of short period reverberations. Several deconvolution algorithms such as predicted, spike, minimum entropy deconvolution and so on has been proposed to obtain such above purposes. Among of them, $\iota_1$ norm proposed by Taylor et al., (1979) and used to compared to minimum entropy deconvolution by Sacchi et al., (1994) has given some advantages on time computing and high efficiency. Theoritically, the deconvolution can be considered as inversion technique to invert the single seismic trace to the reflectivity, but it has not been successfully adopted due to noisy signals of the real data set and unknown source wavelet. After stacking, the seismic traces are moved to zero offset, thus each seismic traces now can be a single trace that is created by convolving the seismic source wavelet and reflectivity. In this paper, the fundamental of $\iota_1$ norm deconvolution method will be introduced. The method will be tested by synthetic data and applied to improve the stacked section of gas hydrate.

  • PDF