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Abstract
In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM)

and Tikhonov’s regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS).
A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution
density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another
support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of
the deconvolution density estimators based on the support vector method is compared with the classical kernel
deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of
a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the
same performance as the classical kernel deconvolution density estimator.

Keywords: deconvolution, ill-posed problem, kernel density estimator, regularization, reproducing
kernel Hilbert space (RKHS), support vector machines (SVM)

1. Introduction

The support vector machines (SVM) was developed in the 1960s by Vapnik and co-workers (Vapnik
and Lerner, 1963; Vapnik and Chervonenkis; 1964). It was initially designed to solve pattern recog-
nition problems. Later the SVM was extended to classification, regression and real valued function
estimation (e.g. Vapnik, 1995). In the early 1990s the SVM was proposed for classification in the
context of Vapnik’s learning theory. The use of the SVM grew rapidly among computer scientists
due to its success with real world data analysis problems. In the 1990s it became clear to statistician
that the SVM with the kernel trick was a solution to optimization problems in a reproducing kernel
Hilbert space (RKHS)). Reproducing kernel Hilbert spaces (Aronszajn, 1950; Wahba, 1990) became
prominent when their relation to the SVM was clear (Moguerza and Munoz, 2006; Wahba, 2006).
Reproducing kernel Hilbert spaces (RKHS) were explicitly introduced in learning theory by Girosi
(1998). In general it is quite difficult to find useful function spaces that are not RKHS.

The problem of measurements being contaminated with noise exists in many different fields (e.g.
Mendelsohn and Rice, 1982; Stefanski and Carroll, 1990; Zhang, 1992). This deconvolution problem
can be stated as follows. Let X and Z be independent random variables with density functions f (x)
and q(z), respectively, where f (x) is unknown and q(z) is known. One observes a sample of random
variables Yi = Xi + Zi, i = 1, 2, . . . , n. The objective is to estimate the density function f (x) where
g(y) is the convolution of f (x) and q(z), g(y) = ( f ∗ q)(y) =

∫ ∞
−∞ f (y − z)q(z)dz. The most popular

approach to this deconvolution problem has been to estimate f (x) using a kernel estimator and Fourier
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transform (e.g. Carroll and Hall, 1988; Fan, 1991). Kernel density estimation is widely considered the
most popular approach to density deconvolution; however, other alternatives have been proposed (e.g.
Hall and Qiu, 2005; Hazelton and Turlach, 2009; Mendelsohn and Rice, 1982; Pensky and Vidakovic,
1999).

The support vector regression method to density estimation was discussed by Weston et al. (1999)
and support vector density estimation in RKHS based on Phillips’ residual method (Phillips, 1962)
was discussed by Mukherjee and Vapnik (1999). The SVM in RKHS can be applied to the deconvo-
lution problem with the support vector density estimation and Fourier transform (Lee, 2010, 2012).
In this paper we discuss deconvolution estimators obtained by support vector density estimation and
Fourier transform in the framework of Tikhonov regularization method in RKHS and propose a sup-
port vector deconvolution estimator which leads to very sparse solution.

2. RKHS and SVM

The support vector regression algorithm computes a nonlinear function in the space of the input data
Rm by using a linear function in high dimensional feature space F with a dot product. The functions
take the form f (x) = ω · Φ(x) + b with Φ : Rm → F and ω ∈ F. In order to estimate f (x) in the
deconvolution problem by applying the support vector regression method (Vapnik, 1995), we first
take g(y) = ω ·Φ(x)+b from a training set {(y1,Gn(y1)), . . . , (yn,Gn(yn))}, where Gn(y) is the empirical
distribution function. Then we try to minimize the empirical risk function Remp(G) with a complexity
term ||ω||2:

Rreg(G) = Remp(G) +
λ

2
||ω||2 = 1

n

n∑
i=1

|G(yi) −Gn(yi)|ϵ +
λ

2
||ω||2, (2.1)

where Vapnik’s ϵ-insensitive loss function |G(y) −Gn(y)|ϵ is described by

|G(y) −Gn(y)|ϵ =
{
|G(y) −Gn(y)| − ϵ, for |G(y) −Gn(y)| ≥ ϵ,
0, otherwise. (2.2)

Equation (2.1) can be minimized by solving the quadratic programming problem formulated in terms
of dot products in feature space F. Then applying the Fourier inversion formula, we can obtain f̂ (x)
(Lee and Taylor, 2008). This method can be constructed in the framework of regularization theory in
RKHS.

A (real) RKHS H is a Hilbert space of real-valued functions f on an interval T with the property
that, for each t ∈ T , the evaluation functional Lt, Lt : f → f (t), is a bounded linear functional. Then,
by Riesz representation theorem, for each t ∈ T there exists a unique element Kt ∈ H such that for
each f ∈ H, Lt( f ) = f (t) =< Kt, f >. The function defined by Ku(v) = K(u, v) =< Ku,Kv > for
u, v ∈ T is called the reproducing kernel. Conversely, a positive definite kernel K can define a unique
RKHS with the following Moore-Aronszajn theorem. This result is important because it gives us a
construction of an RKHS in terms of its reproducing kernel. Let X be some set, for example a subset
of Rn or Rn itself. A kernel is a symmetric function K : X × X → R. A kernel K is called positive
definite if its associated kernel matrix

∑n
i, j=1 cic jK(xi, x j) ≥ 0 for any n ∈ N, and any x1, x2, . . . , xn ∈ X

and c1, c2, . . . , cn ∈ R. Alternatively, if
!

X×X K(x, z)u(x)u(z)dxdz ≥ 0, for all u ∈ L1(X), then kernel K
is called integrally positive definite. Two definitions are equivalent for continuous kernel K.

Theorem 1. (Aronszajn, 1950) For every positive definite kernel K on X × X there is a unique
RKHS HK on X with K as its reproducing kernel.
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We now present Mercer’s theorem (Mercer, 1909) briefly, which is one of the fundamental math-
ematical results underlying learning theory with kernels. In the SVM literature, the kernel is called
Mercer kernel and used as a linear function in high dimensional feature space F with a dot prod-
uct. The Mercer’s theorem is as follows (e.g. see Scholkopf and Smola (2002) for the details): A
positive definite kernel K : X × X → R, with X a closed subset of Rn has the expansion K(x, y) =∑∞

i=1 λiϕi(x)ϕi(y), where the convergence is in L2(X, µ) and ϕi ∈ L2(X, µ), i = 1, 2, . . . , are the or-
thonormal eigenfunctions of the integral equation

∫
X K(x, y)ϕ(x)dµ(x) = λϕ(y).

We can now define the RKHS as the space of functions spanned by the eigenfunctions of the
integral operator defined by the kernel. Let us consider the set of functions,

HK =

 f | f (x) =
∞∑

r=1

ωrϕr(x) and || f ||HK < ∞
 ,

where the inner product is defined as < f , g >=
∑∞

i=1 ωiω
′
i/λi and the RKHS norm || f ||HK is defined

as || f ||2HK
=

∑∞
i=1 ω

2
i /λi. Then we have a RKHS HK with its reproducing kernel K. Assume further

that
!

X×X K(x, y)2dxdy < ∞. Then kernel K will have a countable sequence of eigenvalues and
eigenfunctions, and hence a natural feature map that arises from Mercer’s theorem is

y→ Φ(y) =
( √

λ1ϕ1(y), . . . ,
√
λiϕi(y), . . .

)
and K(x, y) =< Φ(x),Φ(y) > .

We can apply these properties of RKHS to the density estimation. Notice that for the Gaussian
kernel on the infinite real line,

∫ ∞
−∞

∫ ∞
−∞ e−(x−y)2/σ2

dxdy = ∞ and hence Mercer’s theorem does not
apply. However, it turns out that one can derive a Mercer expansion for the Gaussian kernel with the
orthonormal functions in L2(R, ρ), ρ(x) = (α/

√
π) · e−α2 x2

, α > 0 (Rasmussen and Williams, 2006).
Eigenvalues are not necessary countable and Mercer theorem does not apply if the kernel is defined

over an unbounded domain. Feature maps do not necessary arise from Mercer’s theorem. Let us
consider a special class of kernels that is widely used in practice. The kernel is translation invariant,
or K(x, y) = K(x − y). This implies that we will have to consider Fourier hypothesis spaces and all
these spaces will be defined via Fourier transform. The eigenvalue problem for translation invariant
kernels is

∫ ∞
−∞ K(x − y)ϕ(x)dx = λϕ(y), and hence by the convolution theorem the Fourier transform of

the equation is K̃(ω)ϕ̃(ω) = λϕ̃(ω), where ϕ̃(ω) =
∫ ∞
−∞ ϕ(x)e−iwxdx. The following Bochner’s theorem

relates the Fourier transform of a kernel to it being positive definite.

Theorem 2. (Bochner, 1959) A function K(x− y) is positive definite if and only if it is the Fourier
transform of a symmetric, positive function K̃(ω) decreasing to at infinity.

If we consider a positive definite function K(x − y) and define, in the Fourier domain, the inner
product < f (x), g(x) >HK= 1/(2π)

∫
R f̃ (ω)g̃(ω)∗/K̃(ω)dω, the subspace HK of L2 space of the func-

tions f is a RKHS with the norm || f ||2HK
(= 1/(2π)

∫
R | f̃ (ω)|2/K̃(ω)dω < ∞). The well-known Gaussian

kernel represents an inner product in feature space F. Let C0(R) denote the set of continuous func-
tions on R that vanish at infinity. Then the reproducing kernel Hilbert space HK (Vert and Vert, 2006)
associated with the normalized Gaussian kernel K(x, y) = (σ

√
2π)−1e−(x−y)2/2σ2

is

HK =

{
f ∈ C0(R) : f ∈ L1(R) and

∫
R

∣∣∣ f̃ (ω)
∣∣∣2 e

σ2ω2
2 dω < ∞

}
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and since
∫

R | f̃ (ω)|2eσ
2ω2/2dω =

∑∞
k=0 σ

2k/(2kk!)
∫

R ω
2k | f̃ (ω)|2dω, the space HK for the Gaussian ker-

nel consists of the set of square integrable functions whose derivatives of all orders are square inte-
grable. When sample observations are contaminated by normally distributed errors, the kernel K that
has compactly supported Fourier transform, K̃(ω) = (1 − ω2)3I[−1,1](ω), is used in common. Since
K̃(ω)(= (1−ω2)3I[−1,1](ω)) is also a symmetric, positive function decreasing to 0 at infinity, the RKHS
HK associated with the kernel K,

K(x, y) = K(x − y) =
48 cos(x − y)
π(x − y)4

(
1 − 15

(x − y)2

)
− 144 sin(x − y)

π(x − y)5

(
2 − 5

(x − y)2

)
,

is a subspace of L2(R) with norm, || f ||2HK
= 1/(2π)

∫
R | f̃ (ω)|2/K̃(ω)dω < ∞.

3. SVM deconvolution estimators in RKHS

The problem of approximating a density function from data can be dealt with an ill-posed prob-
lem (e.g. Vapnik, 1995). A density function f (x) will be defined as the solution of the equation∫ x
−∞ f (t)dt = F(x), where F(x) is a distribution function and hence the problem of solving the lin-

ear operator equation A f = F with approximation F̂n(x) of unknown distribution function F(x) is
ill-posed. A classical solution to this problem is the regularization theory (Tikhonov and Arsenin,
1977). Given a training sample {(x1, y1), . . . , (xn, yn)}, the Tikhonov regularization method that we
will consider here is defined by an optimization problem over RKHS:

f ∗ = arg min
f∈HK

1
n

n∑
i=1

V( f (xi), yi) +
λ

2
|| f ||HK

 ,
where V is a loss function, || f ||HK is a norm in RKHS HK defined by the positive definition function
K and λ is the regularization parameter. In RKHS HK defined by the positive definite kernel K, The
solution to the Tikhonov regularization method has a very compact representation by the generalized
Representer theorem (refer to Scholkopf et al. (2001) for the details) as follows:

f (x) =
n∑

i=1

αiK(x, xi), αi ∈ R, 1 ≤ i ≤ n.

Now we discuss a SVM deconvolution estimator by Method I (Mukherjee and Vapnik, 1999; Lee,
2012) within the framework of Tikhonov regularization method in RKHS HK as ill-posed problems
and propose a new SVM deconvolution estimator by Method II. Let X and Z be independent random
variables with density functions f (x) and q(z) respectively, where f (x) is unknown and q(z) is known.
Assume that we observe a random sample Y1,Y2, . . . , Yn from a density g(y) ∈ HK , where Yi = Xi+Zi,
i = 1, 2, . . . , n and let {y1, y2, . . . , yn} be a training data set.

Method I.

Step 1. Choose a positive definite kernel K and ϵ-insensitive loss function which consists of dis-
tribution function G(y) of Y and empirical distribution function Gn(y) of a random sample
Y1,Y2, . . . ,Yn.

Step 2. Find a density estimator ĝ(y) to satisfy the following Tikhonov minimization problem by
applying Representer theorem on RKHS HK and SVM regression method (e.g. Smola and



A note on SVM estimators in RKHS for the deconvolution problem 75

Scholkopf, 2003; Vapnik, 1995):

ĝ = arg min
g∈HK

1
n

n∑
i=1

|G(yi) −Gn(yi)|ϵ +
λ

2
||g||2HK

 ,
where g(y, ω) =

∑n
i=1 ωiKh(yi, y), ωi ≥ 0,

∑n
i=1 ωi = 1, ||g||2HK

=
∑n

i, j=1 ωiω jKh(yi, y j), Gn(y) =
(1/n)

∑n
i=1 I(yi ≤ y), G(y) =

∫ y
−∞

∑n
i=1 ωiKh(yi, t)dt, and the coefficients ωi’s of ĝ(ω) can be

found by solving the following problem

max
α,α∗,η,η∗

(
min
ω,ξ,ξ∗

L (ω, ξ, ξ∗, α, α∗, η, η∗)
)

=
1
2

n∑
j=1

n∑
i=1

ωiω jKh

(
yi, y j

)
+C

n∑
i=1

(ξi + ξ
∗
i ) −

n∑
i=1

(
ηiξi + η

∗
i ξ
∗
i
)

−
n∑

i=1

αi

ϵ + ξi −Gn(yi) +
n∑

j=1

ω j

∫ yi

−∞
Kh(y, y j)dy


−

n∑
i=1

α∗i

ϵ + ξ∗i +Gn(yi) −
n∑

j=1

ω j

∫ yi

−∞
Kh(y, y j)dy

 ,
where ω, ξ, ξ∗, α, α∗, η, η∗ ≥ 0.

Then the coefficientsωi’s can be found by solving the following quadratic programming prob-
lem and applying the equation ω = Γ−1

h R(α − α∗):

min
α,α∗

1
2

(α − α∗)tRtΓ−1
h R(α − α∗) −

n∑
i=1

Gn(yi)(αi − α∗i ) + ϵ
n∑

i=1

(αi + α
∗
i ),

0 ≤ α∗i , αi ≤ C, i = 1, . . . , n,

where Γh = [Kh(yi, y j)]n×n, R = [ri j]n×n, ri j =
∫ y j

−∞ Kh(y, yi)dy =
∫ y j

−∞ (1/hn)K((y − yi)/hn)dy.

Step 3. Find density estimator f̂ (x) by applying the Fourier inversion formula,

f̂ (x) =
1

2π

∫ ∞

−∞

˜̂g(ξ)
q̃(ξ)

eiξx dξ, where ˜̂g(ξ) =
∫ ∞

−∞

n∑
i=1

ωiKh(yi, y)e−iξy dy.

A remarkable property of SVM is that ϵ-insensitive loss function (2.2) leads to sparse solutions.
Unfortunately, the support vector deconvolution density estimator by Method I does not preserve
sparsity in terms of coefficients ω, ω = Γ−1

h R(α−α∗) as expected because a sparse decomposition in α
and α∗ is spoiled by Γ−1

h R, which is not in general diagonal. However it is still attractive in the sense
that some coefficients in ω = Γ−1

h R(α − α∗) are very close to zero.
Now we propose another support vector method which has a more sparse solution than Method I.

The following Method II uses the support vector Regression and Tikhonov regularization method in
RKHS. The difference between two methods depends on components of ϵ-insensitive loss function. In
Method I, ϵ-insensitive loss function is defined by distribution function G(y) and empirical distribution
function Gn(y), which cause it to lose sparse solution. In Method II, ϵ-insensitive loss function is
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defined by density function g(y) and a classical kernel density estimator ĝk, which leads to accomplish
sparse solution. In kernel density estimation, ĝk(y) converge to g(y) in probability if g is continuous
at y and hn → 0, nhn → ∞ as n → ∞. Now we will consider the problem of approximating based
on the set of data, {(y1, ĝk(y1), (y2, ĝk(y2)), . . . , (yn, ĝk(yn))}, by applying the support vector Regression
and Tikhonov regularization method in RKHS.

Method II.

Step 1. Choose a positive definite kernel K and ϵ-insensitive loss function which consists of density
function g(y) and a classical kernel density estimator ĝk(y) with the kernel K.

Step 2. Find a density estimator ĝ(y) to satisfy the following Tikhonov regularization problem by
applying Representer theorem on RKHS HK and SVM regression method:

ĝ = arg min
g∈H

1
n

n∑
i=1

|g(yi) − ĝk(yi)|ϵ +
λ

2
||g||2HK

 ,
where ĝk(y) = (1/nhn)

∑n
j=1 K((y − y j)/hn) and the coefficients ωi’s can be found by solving

the following problem

max
α,α∗,η,η∗

(
min
ω,ξ,ξ∗

L (ω, ξ, ξ∗, α, α∗, η, η∗)
)

=
1
2

n∑
j=1

n∑
i=1

ωiω jKh

(
yi, y j

)
+C

n∑
i=1

(
ξi + ξ

∗
i
) − n∑

i=1

(
ηiξi + η

∗
i ξ
∗
i
)

−
n∑

i=1

αi

ϵ + ξi − ĝk(yi) +
n∑

j=1

ω jKh

(
yi, y j

) − n∑
i=1

α∗i

ϵ + ξ∗i + ĝk(yi) −
n∑

j=1

ω jKh

(
yi, y j

) ,
where ω, ξ, ξ∗, α, α∗, η, η∗ ≥ 0.

Then the coefficientsωi’s can be found by solving the following quadratic programming prob-
lem and applying the equation ω = α − α∗:

min
α,α∗

1
2

(α − α∗)tΓh(α − α∗) −
n∑

i=1

ĝk(yi)(αi − α∗i ) + ϵ
n∑

i=1

(αi + α
∗
i ),

where 0 ≤ α∗i , αi ≤ C, i = 1, . . . , n, Γh = [Kh(yi, y j)]n×n.

Step 3. Find density estimator f̂ (x) by applying the Fourier inversion formula,

f̂ (x) =
1

2π

∫ ∞

−∞

˜̂g(ξ)
q̃(ξ)

eiξx dξ, where ˜̂g(ξ) =
∫ ∞

−∞

n∑
i=1

ωiKh(yi, y)e−iξy dy.

This setting of Method II preserve sparsity in terms of the coefficients ω because ω = α − α∗
and αi, α

∗
i vanish for |g(yi) − ĝk(yi)| < ϵ. However, Method I does not preserve sparsity because

ω = Γ−1
h R(α − α∗) and a sparse decomposition in α and α∗ is spoiled by Γ−1

h R.
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4. Simulation and discussion

The asymptotic properties of the kernel density estimator in deconvolution problems depend strongly
on error distribution. Following the work of Fan (1991), two types of error distributions can be
considered: ordinary smooth and supersmooth distributions. Normal, mixture normal, and Cauchy
distributions are supersmooth, therefore, the Fourier transform q̃(ξ) (=

∫ ∞
−∞ e−iξzq(z)dz) of q(z) satisfies

d0|ξ|−β0 exp
(
−|ξ|

β

γ

)
≤ |q̃(ξ)| ≤ d1|ξ|−β1 exp

(
−|ξ|

β

γ

)
as ξ → ∞,

for some positive constants d0, d1, β, γ and constants β0 and β1. Gamma and double exponential
distributions are ordinary smooth, that is, the Fourier transform q̃(ξ) of q(z) satisfies

d0|ξ|−β ≤ |q̃(ξ)| ≤ d1|ξ|−β, as ξ → ∞,

for some positive constants d0, d1, β. Thus in the classical deconvolution literature, normal and dou-
ble exponential distributions have been typically selected and investigated as error distributions. In
this section we compare the performance of three different deconvolution density estimators when
measurement errors are Laplacian or normal: classical kernel deconvolution estimators and support
vector deconvolution density estimators based on Method I and II. Target distributions are selected
from distribution functions used in Hazelton and Turlach (2009).

When measurement errors are double exponential, the classical kernel deconvolution density esti-
mator with Gaussian kernel is evaluated as

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞

eiξ(x−y j)K̃(σhξ)
q̃(ξ)

dξ

=
1

n
√

2πσh

n∑
j=1

e
− (x−y j)2

2σ2
h

1 −
σ2

Z

σ2
h

( x − y j

σh

)2

− 1


 , (4.1)

where K̃(σhξ) = e−0.5σ2
hξ

2
, q(z) = (1/2σZ)e−|z|/σZ , and q̃(ξ) = (1 + σZξ

2)−1.
The support vector deconvolution density estimator with Gaussian kernel is evaluated as

f̂ (x) =
1

2π

∫ ∞

−∞

n∑
j=1

ω jK̃h(y j, ξ)eiξx

q̃(ξ)
dξ

=
1

√
2πσh

n∑
j=1

ω j e
− (x−y j )2

2σ2
h

1 −
σ2

Z

σ2
h

( x − y j

σh

)2

− 1


 . (4.2)

When measurement errors are normal, in order to avoid problems of integrability, a kernel K that
has compactly supported Fourier transform K̃(ω) = (1 −ω2)3I[−1,1](ω) is used in common. Using this
kernel K(x) = {(48 cos x)/(πx4)}(1 − 15/x2) − {(144 sin x)/(πx5)}(2 − 5/x2), a kernel deconvolution
density estimator f̂ (x) in the presence of normal measurement error can be calculated as:

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞

eiξ(x−y j)K̃(hnξ)
q̃(ξ)

dξ

=
1

nπhn

n∑
j=1

∫ 1

0

(
1 − ξ2

)3
cos

(
ξ

(
x − y j

hn

))
e
σ2

Z ξ
2

2h2
n dξ, (4.3)
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Table 1: The bandwidth used in the simulation when q(z) is Gaussian

f (x) N(0, 1) 0.5N(−2.5, 1) + 0.5N(2.5, 1) 2
3 N(0, 1) + 1

3 N(0, 0.04)

var(Z)/var(X) 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50
bandwidth(= hn) 0.20 0.23 0.35 0.40 0.50 0.65 0.15 0.22 0.25
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Figure 1: f (x) is N(0, 1) and q(z) is Gaussian.

where K̃(ξ) = (1 − ξ2)3I[−1,1](ξ), q(z) = (
√

2πσZ)−1e−z2/2σ2
Z , and q̃(ξ) = e−σ

2
Zξ

2/2.
The support vector deconvolution density estimator is evaluated as

f̂ (x) =
1

2π

∫ ∞

−∞

n∑
j=1

ω jK̃h

(
y j, ξ

)
eiξx

q̃(ξ)
dξ

=
1

2π

n∑
j=1

ω j

∫ 1
hn

− 1
hn

(
1 − h2

nξ
2
)3

e−iξy j e
σ2

Z ξ
2

2 eiξx dξ

=
1
πhn

n∑
j=1

ω j

∫ 1

0

(
1 − ξ2

)3
cos

(
ξ

(
x − y j

hn

))
e
σ2

Z ξ
2

2h2
n dξ. (4.4)

All of the Figures 1–6 show plots of the classical kernel deconvolution estimates and support vec-
tor deconvolution estimates when 100 points are randomly generated respectively from a target distri-
bution f (x) and a noise distribution, normal distribution q(z) with mean zero or double exponential dis-
tribution q(z) with mean zero. The measurement error variance is set at low (= var(Z)/var(X) = 0.1),
moderate (= var(Z)/var(X) = 0.25), and high levels (= var(Z)/var(X) = 0.5) as shown in Hazelton
and Turlach (2009). The exact probability density function f (x) is shown in bold line. For the support
vector deconvolution estimates, Gunn’s program (Gunn, 1998) and MATLAB 6.5 were used. In kernel
density estimation the choice of kernel is not crucial, but the choice of bandwidth is very important.
In the following figures, a rule of thumb bandwidth as an initial value (Fan, 1991, 1992; Wang and
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Figure 2: f (x) is 0.5N(−2.5, 1) + 0.5N(2.5, 1) and q(z) is Gaussian.
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Figure 3: f (x) is 2/3N(0, 1) + 1/3N(0, 0.04) and q(z) is Gaussian.

Wang, 2011) is used: for Laplacian errors, σh = (5σ4
Z/n)1/9 and for Gaussian errors, hn = σZ(ln n)−0.5.

Figures 1–3 presents the simulation study when q(z) is Gaussian. The bandwidth(= hn) used for kernel
deconvolution estimates (4.3) and support vector deconvolution estimates (4.4) in the simulation is in
Table 1. All the deconvolution estimates used the same bandwidth. The parameters (ϵ,C) used for all
the support vector deconvolution estimates are (0.05,∞). In the figures kde, sve I and sve II repre-
sent kernel deconvolution estimates, support vector deconvolution estimates by Method I, and support
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Table 2: The bandwidth(= σh) used in the simulation when q(z) is Laplacian

f (x) N(0, 1) 0.5N(−2.5, 1) + 0.5N(2.5, 1) 2
3 N(0, 1) + 1

3 N(0, 0.04)

var(Z)/var(X) 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50
kde 0.50 0.60 0.70 0.75 0.90 1.20 0.35 0.50 0.55
sve I 0.95 0.95 0.95 1.10 1.15 1.20 0.80 0.80 0.90
sve II 0.80 0.80 0.80 1.10 1.15 1.40 0.60 0.60 0.90
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Figure 4: f (x) is N(0, 1) and q(z) is Laplasian.

vector deconvolution estimates by Method II respectively. In the case of Gaussian error, all support
vector deconvolution estimates by Method II show the same figures as the usual kernel deconvolution
estimates as Figures 1–3 indicates. In Figures 1–3, the number of data (support vectors) used for sve
II is 10 to 15 among 100 random numbers and the number of data used for sve I is 40 to 60.

Figures 4–6 presents a simulation study when q(z) is double exponential distribution with mean
zero. The bandwidth(= σh) used for kernel deconvolution estimator (4.1) and support vector deconvo-
lution estimator (4.2) in the simulation is in Table 2. The parameters (ϵ,C) used for the support vector
deconvolution estimates by Method I and the support vector deconvolution estimates by Method II are
(0.05,∞) and (0.05, 0.01) respectively. In the case of Laplacian error, support vector deconvolution
density estimates by Method II show very similar figures to the usual kernel deconvolution density
estimates as Figures 4–6 indicate. In Figures 4–6, the number of data (support vectors) used for sve
II is 5 to 15 among 100 random numbers. However the number of data used for sve I is not sparse as
ω = Γ−1

h R(α − α∗) indicates.

5. Concluding remarks

Three different deconvolution density estimators were discussed in this paper when the sample obser-
vations are contaminated by Gaussian or double exponentially distributed errors. The support vector
deconvolution density estimators by Method II lead to very sparse solution and the number of support
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Figure 5: f (x) is 0.5N(−2.5, 1) + 0.5N(2.5, 1) and q(z) is Laplasian.
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Figure 6: f (x) is 2/3N(0, 1) + 1/3N(0, 0.04) and q(z) is Laplasian.

vectors is 10 to 15 among 100 random numbers in the simulation. Furthermore, it is as good as the
usual kernel deconvolution density estimators even though the simulation study conducted is limited.
In the case of Gaussian error, the support vector deconvolution density estimates by Method II show
the same figures as the kernel deconvolution density estimates. The support vector deconvolution
density estimator by Method I is also attractive in the sense that some coefficients in ω = Γ−1

h R(α−α∗)
are close to zero.
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