• Title/Summary/Keyword: decentralized linear control

Search Result 78, Processing Time 0.024 seconds

Linear Decentralized Learning Control for the Multiple Dynamic Subsystems

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.153-176
    • /
    • 1996
  • The new field of learning control devleops controllers that learn to improve their performance at executing a given task, based on experience performing this task. the simplest forms of learning control are based on the same concepts as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers ina decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  • PDF

On Decentralized Aadaptive Controller Design

  • Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.140-145
    • /
    • 1992
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected linear system composed of a number of single-input single-output subsystems in which outgoing interactions pass through the measurement channel and are subjected to bounded external disturbances. The scheme can treat the unknown strength of interactions as well as uncertainties in subsystem dynamics, and allows for the case when the relative degree of each decoupled subsystem does not exceed two.

  • PDF

Parameter Estimation of Single and Decentralized Control Systems Using Pulse Response Data

  • Cheres, Eduard;Podshivalov, Lev
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2003
  • The One Pass Method (OPM) previously presented for the identification of single input single output systems is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess, iteration, or powerful search methods are required. These features are of interest especially when the parameters of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results against those of two recently published methods based on pulse testing. The comparison is performed using two databases from the literature. These databases include single and multi input-output process transfer functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature, which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable DCSs.

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Koo, Geun-Bum;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.780-785
    • /
    • 2007
  • This paper proposes the decentralized dynamic output feedback controller for discrete-time nonlinear interconnected systems using Takagi-Sugeno (T-S) fuzzy model. Through T-S fuzzy model of each subsystem, the decentralized dynamic output feedback controller is designed. By the closed-loop subsystems with controller, it represents the linear matrix inequality (LMI) for stability of whole interconnected system. The value of control gain are obtained by LMI. An example is given to show the experimentally verification discussed throughout the paper.

Intelligent Decentralized Observer Design for Discrete-Time Nonlinear Interconnected Systems (이산시간 비선형 상호결합 시스템을 위한 지능형 분산 관측기 설계)

  • Koo, Geun Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In this paper, the decentralized fuzzy observer design technique is presented for discrete-time nonlinear interconnected systems, which are assumed to be with unknown interconnections. To design the decentralized fuzzy observer, the design problem is considered and the performance function is defined to solve the design problem. Based on the performance function, the sufficient condition is derived for the observer design, and its condition is formulated into linear matrix inequalities. Finally, by the simulation result, the validity of the proposed observer design technique is shown.

H_ Fault Detection Observer Design for Large Scale Time-Invariant Systems (대규모 선형시불변 시스템을 위한 H_ 고장검출 관측기 설계)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.818-822
    • /
    • 2009
  • In this paper, we consider a decentralized observer design problem for fault detection in large-scaled linear time-invariant systems. Since the fault detection residual is desired to be sensitive on the fault, we use the H_ index performance criterion. Sufficient conditions for the existence of such an observer is presented in terms of linear matrix inequalities. Simulation results show the effectiveness of the proposed method.

Decentralized Stabilization of a Class of Large Scale Discrete-time Systems Subject to System Parameter Uncertainties (시스템파라미터가 불확실한 대규모 선형 이산시간 시스템의 비집중 안정화에 관한 연구)

  • Lyou, Joon;Yoon, Myung-Joong;Chung, Myung-Jin;Bien, Zeungnam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.89-96
    • /
    • 1985
  • This paper presents a decentralized adaptive scheme to stabilize a class of large-scale discrete-time linear systems subject to system parameter uncertainties. The scheme combines an adaptive nonlinear feedback control for compensating some effects by unknown system parameters and the exact model-based linear feedback control for overriding the unfavorable effects by interconnections. A condition of stability is derived, under which the overall adaptive system is assured to be globally stable. Also, a numerical example is provided to illustrate the feasibility of the scheme.

  • PDF

A New Excitation Control for Multimachine Power Systems I: Decentralized Nonlinear Adaptive Control Design and Stability Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.278-287
    • /
    • 2005
  • In this paper a new excitation control scheme that improves the transient stability of multi machine power systems is proposed. To this end the backstepping technique is used to transform the system to a suitable partially linear form. On this system, a combination of both feedback linearization and adaptive control techniques are used to confront the nonlinearities. As shown in the paper, the resulting nonlinear control law ensures the uniform boundedness of all the state and estimated variables. Furthermore, it is proven that all the error variables are uniformly ultimately bounded (DUB) i.e. they converge to arbitrarily selected small regions around zero in finite-time. Simulation tests on a two generator infinite bus power system demonstrate the effectiveness of the proposed control.

GLR approach to failure diagnosis in a linear system with decentralized estimators

  • Kumamaru, Kousuke;Sagara, Setsuo;Sakae, Kouzou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1055-1058
    • /
    • 1988
  • A systematic way of failure diagnosis in a linear system with decentralized estimators is developed. The generalized likelihood ratio (G.L.R) approach to failure detection and identification is used for designing a diagnosis system in each subsystem based on the innovation analysis. For the simplicity of the theoretical formulation, a design scheme of failure diagnosis is developed for the system decomposed into two subsystems. To demonstrate the effectiveness of our approach, several simulation studies have been carried out on a third-order linear system which is constructed of a second-order damped oscillator and a first-order lag.

  • PDF

Decentralized Adaptive Controller Design for a Class of Interconnected Continuous Systems (일련의 상호연결된 연속시간 시스템에 대한 비집중적응 제어기의 설계)

  • Lyou, Joon;Kim, Byung-Yeun
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.53-58
    • /
    • 1992
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected linear system composed of a number of single-input single-output subsystems in which outgoing interactions pass through the measurement channel and are subjected to bounded external disturbances. The scheme can treat the unknown strength of interactions as well as uncertainties in subsystem dynamics, and allows for the case when the relative degree of each decoulped subsystem does not exceed two.

  • PDF