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The One Pass Method (OPM) previously presented for the identification of single mput single output systems
15 used o estimate the parameters of a Decentralized Control System (DCS). The OPM 1s a hinear and therelore
a simple estimation method. All of the caleulations are performed in one pass, and no initial parameter guess,
iteration, or powerlul search methods are required. These features are ol interest espeetally when the parameters
of multl put-output model are estimated. The benelits of the OPM are revealed by comparing its results
against those of two recently published methods based on pulse testing. The comparison 1s performed using
two databases {rom the iterature. These databases include single and multi input-output process transter
functions and relevant disturbances. The closed Toop responses of these processes are roughly captured by the
previous methods, whereas the OPM  gives much more accurate results. I the parameters of a DCS are
estimated, the OPM vields the same results i nultn or single structure implenientation. This s a novel teature,
which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable
DCSs.
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control svstem

Introduction

Identification of transfer functions modcls is required lor
the tuning and design of controllers. For this purposc. a
model of the process is assumed and its paramclcrs arc
evaluated from a (est response data. Tt has been recognized!
that most process dynamics may in gencral be simplificd by
the first order plus dead time (FOPDT) modcl as:
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or by the sccond order plus dead time (SOPDT) modc] as:
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Thus manv cstimation methods arc found in the litcrature for
the parameter cstimation (PE) of FOPDT and SOPDT
models.” To cnhance (he accuracy of (he resulls nonlincar
scarch algorithms arc uscd. Bul this partially prevents their
usage as on-linc and on sitc method. Morcover. it has been
recognized (hat the main problem concerned with the delay
estimation with prediction error (cchniques is duc to the
multimodal naturc of the loss function 10 be minimized with
respect (o delay.® Thus an incorrect guess may results with
inadcquate cstimation, The problem is morc complicated if
on¢ rcalized (hat the cstimated delay is not necessarily the
truc onc. ie. thc onc mcasured dircctly from the pulse
responsc. but rather onc of the four paramcters which
minimize (he loss function in question,

2 k>0 2)
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Only recently a method which is simple. accurate and free
from the above drawbacks was proposed.” The method is
called OPM bcecausc the estimation is performed in ong pass.
The OPM is. 1o the best of our knowledge. a novel appli-
cation of lincar and non-recursive Least Squared (LS) identi-
fication in (he frequency domain,™

Duc (o its salient features the results of the OPM were
extensively compared™ ™ with other methods. However all of
these comparisons were performed using only siep response
tests. Henee. Tt is important and interesting to investigale the
OPM results using another popular test signal. A uscful and
practical test for obtaining experimental dynamic data from
many chemical enginccring processes is pulse testing. This
test signal docs not gencrate an output offscl and (he iesl
time is rclatively short. Duc to these features cstimation
mcthods using pulsc test signal continuously appear in the
litcrature. ™

Modcling issucs associated with multi-input. multi-output
(MIMO) systems have long been a significant focus of
attention, Even when a proposed MIMO identification is
technically sound. casc of usc consideration remain a press-
ing issuc to cngincering practice.” The coupling between
the system loops degrade the identification results. and as a
conscquence far fewer imvestigation were done for MIMO
system as compared with single input single outpul onc.”
Therefore. there is great incentive for developing “simple
and corvenient” ways to accomplish sysiem identification
and subscquent control design when the intended application
is multivariable control.!” Tn this content the application of
the OPM to MIMO systens with decentralized controllers is
imvestigated.

We compare the results of the OPM with those of two stale
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of the art methods. These two methods are applied in open
and closed loop structures and were especially designed for
pulse response data. The bases for the comparison are com-
posed of four single input single output (SISO) dynamics
and one MIMO process.™” Thus the performances of the
OPM with pulse data response and MIMO/SISO structures
are thoroughly imvestigated in this paper.

The paper is organized as follows. [n the next section the
OPM is derived and the state of the art methods based on
pulse testing are briefly presented. The comparison between
the methods is carried out in open loop and with four
representative SISO dynamics. The results of the estimation
of the parameters of a MIMO DCS model are presented
next. and finally the last section deals with the conclusions.

OPM Parameter Estimation

We rewrite the SOPDT model in the frequency domain as:
/\',,,C’ jmh

- (3)

l—aw +jbw

Thus the LS estimator of the squared amplitude is:
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where: f(j®) is the frequency response data. which is
calculated from the pulse test time response.
After some modification one obtains:
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The following substitution ol vatiables is now in order:
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The cstimator is nonlincar in the parameters. To make it
lincar we follow Levy's idea® and multiply cach term in the
summation by the denominator of the right hand side term.
The original loss Munction beecomes:

I = Lol + walol + Aol - 11 @)

The minimum of the loss function is obtained if the
following relations hold:
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and these result with the equations:
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From these lincar cquations x. #. z arc obtained and using
Eq. (6) we get:

k=2 a= k0 b=kl w20y (10
A linear LS phase estimator is now defined:

Jp= % larg /( jo) + ho+ arg(l-aw + jha)|”  (11)
And this vields the dead time expression:
% larg f(jw) + arg(1 - aw +jbw)|w

h=- - (12)
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Remarks:

1. The method® can be used to generate and calculate the
[requency response data.

2. IC the identificd process is of a higher order the
arguments which minimize Eq. (8) do not minimize Eq. (7).
In (his casc the modcel obtained via the minimization of Eq.
(8) is weighted towards the high frequencics.” Thus we
sclect the critical frequency as the upper limits for the
frequency summation in Eq. (9). This forces the model to be
skewed towards this critical frequency. A novel features if
“identification for control” is sought.™

3. A fairly pedestrian approach is taken (o derive the OPM
algorithm for a DCS. The cxtension rclay on the lincar
propertics of the method and is ¢xplained in details in laticr
on,

1T onc follows the samce lines as for the second order model
and usc & = 0. the following matrix cquation is obtained for
the FOPDT paramcter cstimation:

-
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knand & are then calculated from Eq. (10). The dead time
cstimation is also casily obtained as:
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Two Comparative Methods Based on
Pulse Response Data

In order to imvestigate the relative advantages of the OPM
it is compared with the two state of the art methods. The
comparison is carried out by a simulation study over a large
number of system dynamics. which were previously selected
and used for this purpose. All the relevant aspects of the
pulse selection and related noise disturbances are already
included in the bases and therefore reflected in the
simulation results. Thus a full and a compressive study is
performed. eliminating the chance that the results are “only a
fluke of luck".

In the sequel a brief description of the two state of the art
methods is given. For further details the reader is directed to
the relevant references.~”

Open Loop Method (OLM). To apply this method, a
square pulse is introduced at the process input and a pulse
response is recorded in a relatively short time period.

Tiwvo points (1. pz) of the pulse time response are used in
the estimation process. p; is selected as the first peak of the
pulse response. whereas p- is arbitrarily chosen. The estima-
tion loss function is defined as follows:

d d <
a= DA + |—n. ——n. 3
P2 Pl ¥ 7P = 2pa, (1)) (15)

J()= Ip] _p]m’ +

The values of the parameters of the model (see Eq. (2)).
which minimize the cost given by Eq. (15). are the estimated
ones. The minimization is conducted through the MATLAB"
function “fmins”. Note that the procedure requires imitial
values of the model parameters. and it is claimed that any
reasonable values are good for the initial guess.

Parameter Estimation of a DCS in a Closed Loop
Configuration (CLC). This method is applicable for multi-
variable decentralized systems. It is assumed that the DCSs
are well defined for the control structure. therefore no “gain
directionality™” problem'” is associated with these svstems.

The estimation test is performed with all of the processes
in closed loops. A pulse change is sequentially applied to
each set-point while the others are kept constant. The
following matrix function is then derived:

PRy ! (16)

where: }. P, R. ' are respectively: the Laplace transform
of the outputs, the process matrix transfer functions. diagonal
matrix of the Laplace transform of pulse set point changes.
and diagonal matrix of control matrix transfer functions.

The Fourier transform of Eq. (16) is the “estimation data’.
These data is used to estimate a matrix model of FOPTD
transfer functions. The estimation loss function is defined for
each element (2. 1) of the matrix model as follows:

Jo(imn) = 2

i1
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The two frequencies in Eq. (17) are arbitrarily chosen and
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used to find the three model parameters via the JoGn. n)
minimization. This is again conducted by the “fmins”
function. Again an initial guess of the parameters is required.

Results of Estimation in Open Loops

Four example processes are used for the performance test
of the OPM estimation in open loops, and the results are
compared against the OLM ones. The transfer functions of
the processes are as follow~:

=35
. P.(s)= ! 3t
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(25" + 25+ L){s+ 1)
(18)

Pi(s) = ——
(s + 1Y 2s+ 1)
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Pi(s)y= D PLs) =

95"+ 245+ 1

A comimon practice is to choose the sampling frequency as
10 to 30 times"? the equivalent time constant inmverse. In this
example a synthesis of a proportional, integral and derivative
(PID) controller is desired. Since a PID controller can
achieve a high bandwidth frequency.'* a sampling rate of 6
cvcles/min is selected. A square pulse of a height of 1 and a
width of | |min] is applied” to all four-example processes.

With the OLM one has to select an initial guess for the
parameters, and the location of the second data point. We
take the second point™ p: at £ = 10 |min|. and try two initial
guesses for the estimated parameters (marked 1. 2). We
select these initial gnesses to be symmetric around the
previously estimated values.” Our results are designated as
OLM,; and OLM,>. and are presented in Tables 1-4. The n
subscript stands for the level of the noise. which is injected
at the process output. For the OPM initial conditions are not
required. therefore one subscript (n) is sufficient to designate
our results with this method.

The estimated models are used in a PID controller sy nthe-
sis.” Thus the integral of absolute difference (IAD) between
the designed closed loop response and the true one Is
comnsidered as a relevant quality measure for the quality of
the PE. The closed loops responses to a combined
disturbance and set point unit steps are simulated. and the
[ADs are calculated up to 25 [min|. The values of the [ADs
are presented in Table 3 for the P5(s) process.

This process is a true SOPDT process. and a perfect esti-
mation should lead to a zero IAD in the noise free case.
However a difference of 116% is found between the [ADs of
the OLMs with a noise level of zero. and a difference of
114% for the noise level of one. Thus. the OLM results
highly depend on the initial guess.

With the OPM we first calculate the open loop frequency
ratio for the various noise levels. The process frequency
response for pulse input is calculated as follows®:

jo _l"[ w(nye ™ d
/(}CO] = ) jani2 (]9]
(1 -

The mumber of frequency points to be calculated is a
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matter of "curve fitting” technique. For a second order system
three points of the amplitude frequency graph are required to
fix the values of the three parameters (A.. «. /). If noise is
present two more frequency points are needed to designate
the noise parameters. To be on the safe side the points
number is doubled.

Ten points of frequency are then calculated in the interval
(0. Critical frequency|. These points are used in Eqs. (Y).
(10). (12) to calculate the values of the parameters. As stated
the Ps(y) process is a SOPDT one. therefore the estimation
results can be directly compared against the true ones. The
J(j®) points of this process are depicted in Figure 1 against
the Bode plot of the model. The match is tight and no
difference can be observed between the data points and the
relevant Bode points of the OPM,, model. It is obvious from
the data in Table 3 that the results of the OPM are the closest
to the true ones. and are the less sensitive to the noise. [n
order to emphasize the relative improvement of the OPM as
compared with another method (i). we define the relative
improvement of the IAD value as:

]ADi - ]AD(ZJP.\I,,
IAD;

RIAD; = (20)
where TADgyn, is the closed loop TAD between the
response of the OPM model of zero noisc and (he truc onc.
The RTIADs arc compuled and added to Tables 1. 2 and 4.
The RIAD values clcarly demonstrale the major improve-
ment obtained with the OPM. This is further demonstrated in
Figure 2. where the various /(s) modcel responses in the
closcd loop arc depicted against (he truc onc. Obviously the
OPM. response is almost (he same as ihe truc one. whereas
the OLM ones significanily differ from it. The noisc
influcnce can be detected by the RIAD difference between
the 0 noisc Ievel case and the 1 noisc level. From Tables 1. 2
and 4 (he additional average for (he OPM is (8% as
compared 10 an average of 1% for the OLM. For the true
SOPDT process (he RTAD resolution is very poor. Therefore

8 T 0

Amplitude (dB)
Phase (rad)
P

3
10 102 10" 10°

frequency (rad/min)

frequency (rad/min)

Figure 1. Frequency response data pomts of Pi(s) agaimst the Bode
plot of 1ts OPMp model.

Fduard Cheres and Lev Podshivalov

instead of the RIAD the [AD values are presented in Table 3.
Again, the OPM-IAD values are much smaller than the
OLM ones.

Table 1. Estunation results of ()

Method OS¢ o1, p B h  RIAD
Level
OLMau 0 0 0989 1374 2344 2867 979
OLMu: 1283 4545 4264 2312 966
OPMq LOOO 2181 3505 3503 000
OLM., I 001 1035 2373 3208 1047 980
OLM: 0955 2804 23349 4151 958
OPM, 0982 2349 2648 3378 230

Notes: A. Initial conditions tor QOIL.My, are - &, — 05 a0 -2 H — 2.
B. Initial conditions for OLMyzare - &, — 13 a -3 b6 - 43 fi — 4.
C. STD-standard deviation of a Gaussian noise with zero meun.
D. RIADPID settings (K¢ = 0.931. J, - 4341, - 1.534)

Table 2. Estimation results of £,(s)

Noise

Method ST Fon a b h RIAD
Level
OLMg 0 0 0524 1729 2630 0861 8l
OLMo: 0824 2012 3135 2368 709
OPMg 0998 3733 3469 331 0.0
OLM, 1 001 0324 1729 2630 0861 810
OLM,2 0927 2340 3438 2470 713
OPM, 1010 3785 33566 1.306 6.3

Notes: A. Initial conditions for OL. M,y are - &, —03a—1.535-2hH— |,
B. Initial conditions tor Ol Myzare - &, ~ 1 5Sa—-45h - 435 h - 2.
C. RIAD PID settings (K¢ — 141, I = 3.50 I, — 1.50).

Table 3. Listimation results of P1(s)

Method — DOIC gpy  p g, P b IAD
Level
OlL.Mg, { 8] 0961 110111 1L.7110 0305 1,193
Ol.My; 1.097 7671 3209 1578 2588
OPM, 0.996 9019 2387 1.002 0.022
OLM 1 .01 0753 7152 1.080 0927 1.354
OLM,z 1252 7644 3721 1.535 2903
OPM, 0.992 9190 2387 0957 0.073
True values 1000 9000 2400 1.000  0.00

Notes: A. Initial conditions for OLMy are - 4, - 05a¢-646-2/-08.
B. Imitial condhtions tor OI. M- arc - &k, ~ 53 a— 12 h—4 h— |5
C.TIATEPID settings (K¢ = 1,95, 1, — 3.33 Jp — 3.02).

Table 4. Istimation results of P ()

Identification Noise

Method I.evel SID ky “ b h RIAD
OLM 4] 0 0,378 0818 1425 2620 746
OLMg: 0437 0231 1097 3.014  80.2
OPMy 0,999 2388 2.367 1.649 0.0
OLM,, 1 001 1119 6712 2363 0458 72.0
OLM,» 0.690 (0827 1.818 2387 67.1
OPM, 1O 20177 2381 1.689 237

Notes: A. Initial conditions for OLMy are - &, —053a-2b-14 - 1.
B. Imtial conditions tor OTL. M- are - &, 15 a -6 h -4 4L -2
C. RIATY:PID settings (Ke = 1,13, 1= 2.01 Ip — 1.69).
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25 ‘ - P — . PR

time [min]

Figure 2. 'True and estimated closed loep responses of £(s) with a
series PID controller (h, = 0.931. =434, 1, = 1.34).

Results of Estimation in Closed Loops

The example system is a 3 x 3-distillation dynamics. and
the process transfer functions are listed in Table 5. The
following test procedure is followed.” Firstly. decentralized
proportional controllers are applied to the dvnamics in closed
loops. The proportional gains are 1. -0.1 and 1 for loops 1. 2
and 3. respectively. Then. a rectangular pulse having height
of one and width of one |min]| is applied to the set point of
each control loops one at a time and a sampling rate of 0.1
|min] is used. The CLC procedure is now used to obtain the
estimation data at the two frequency points™: 0.01 and 0.05
|rad/min].

Instead of minimizing the loss function of Eq. (17) for
each system component. we minimize the following global
loss function:

Jo= 2 Jo(m.n) 1)

ni, 1

Table 5. Processes and estimated models ot a 3 x 3 distillation svstem
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[f the “fmins™ routine is used to minimize this cost function,
it results with negative delays and negative time constants.
Therefore an optimization with zero lower bound on the
delays and time constants is applied. and is cairied out via
the MATLAB ‘“constr” function. Two sets of initial
conditions are used. and the results are designated CLC, and
CLC:. These results are depicted in Table 5 and the associat-
ed initial conditions are presented in Table 6. It can be
observed that the CLC, values for /| ; and /fare
approximately half of those obtained with the CLC:. More-
over. using the single estimator of Eq. (17) another values
were obtained® for the parameters of the distillation model.

Returning to the OPM. a global amplitude loss function is
introduced as follows:

J, = > J,(mon) (22a)

LI
where:

Jn‘(m‘”) = Z llf;u. r:(/m;‘)ll - ‘Gm. nr(f‘mi)lljz (22b)
=12

Using the same reasoning a global phase estimator is also
easily derived.

Since any system component (;n. ) is independent. the
linear LS solution of the global estimator of Eq. (22) is
exactly the same as the one for the single estimator, i.e the
solution of Egs. (9)-(10) is repeated for every (. 1) compo-
nent. The same reasoning is also true for the solution of the
global phase estimator.

The “estimation data” used with the CLC method is also
used with the global OPM estimator, and the estimated
parameters are presented in Table 5. Again the OPM results
are very close to the true ones (see Table 5 for details). [n
contrast to the previous results no ambiguousness exists

Process Aclual Estimated
CLC CLCa OPM
P 0.660 = 0.66e = 0.66e =™ 0.66¢ =
675+ 1 6.7s+ | 6.7s+ | 675+ |
P2 —0.66e —0.61e —0.61e —0.6le M
8.0ds+ 1 8635+ 1 8.63s+ 1 8.63s+ 1
Pia —0.0049 —0.0048¢ 7 —0.005¢ ' —0.00490 "7
9.06s+ 1 6495 + 1 15185+ 1 9.06s+ 1
P 1L1e™™ 111e™ L11e™ (e
3255+ 1 3255+ 1 3255+ 1 3255+ 1
Paz 237 2,307 %" 230071 3 29, s
Ss+1 5005+ 1 S.00s + 1 4995+ 1
Pas 001" —0.01e” " —0.0107" Y —001e”
7095+ 1 4,665+ 1 10.06s + 1 7.09s + 1
P —36Re™ _34. 7.0 347,70 34 680718
8155+ 1 825+ 1 825+ 1 8165+ 1
P 4627 46207 46,207 46,2407
1095+ | 10.95+ 1 10.95+ 1 10.935+ |
Pas 0.80(11.615+ 1)e * 08607 (1,860 (1860
(3.89s+ 1)(18.8s+ 1) 6.835+ | 6.825+ | 6.505+ |
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Table 6. Initial conditions for the estunation of the distillation
svstem

Process Initial Conditions
CLC, CLC
PL 03¢ le*
Is+ 1] 10s+ 1
P 03¢ -3 -1 e_ﬁs
ds+ 1 125+1
Pis 00027 000707
G5+ | 155+ 1
P 0.5¢ L3¢ '™
ls+1 Ss+ 1
FPaz e gt
2.55+1 73s+1
P13 —0.005¢ 7" 0,027
ds+ 1 105+ 1
P “17¢ —50e '
d5+ 1 125+ 1
Paz 2507 6he "™
Ss+ 1 13s+1
Pas 0.5¢7" 1507
35+ 105+ 1

between the OPM results which are obtained with the single
and global estimators.

Conclusions

The OPM is extended to the MIMO case and it’s resulls
arc im¢stigaled and compared against (wo statc of (he ar
methods bascd on pulsc (esting,

The comparison is petformed by a simulation study. To
remove the chance that (he study results are just “a fluke of
luck™ two compartative test bascs from the literature are uscd.
Onc basis includes four high order SISO dynamics and the
sccond includes a 3 X3 MIMO process with decentralized
controllers in closed loops. In all the cascs the OPM results
arc better than thosc obtained with (he previous methods.
The OPM resulls arc also found to be more robust to the
measurcment noisc.

As differ from the previous methods. the OPM is lincar
and i’s results do not depend on an “initial gucss™ of the
parametcrs. Morcover. the drawback of multiple solutions of
the previous methods is removed. Tt is also shown that the
OPM results for a global MIMO cstimator arc identical to
thosc of scveral SISO cstimators. This outcome is unique to
the OPM and is not achicved by anv of the previous methods.
In other words. a lincar algorithin for the explicit solution of
the MIMQO global cstimator is obtained whosc calculation
burdcen is cquivalent to the one of an SISO cstimator.
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These highly facilitated the application of the OPM at the
plant floor especially with MIMO systems.

Nomenclature
a  denominator coetticient in eq. 3
b denominator cactlicients in eq. 3

¢ diagonal matnx of control transfer functions
£ widih of pulse [min|

A f,.. . © frequency response data | rad‘min |

(s @ transter tunction ot a process model
Il ¢ height of pulse
A dead time [min]

I adentity matrix
j fundamental imaginary number

Ja. J.(m ) LS estimators of the squared amplitude

Jpoo Levy estimator

Jo o OLM cstimator

Je ],»(mn) Phasc cstimators

k. controller proportional gain
&y model gain

7 transler [unction of a process
£ multivariable process matrix tunction
£, component of £

Pl p data points from the pulse response curve
Pime P - points from the model pulse response curve
: diagonal mauix of pulse set point changes

s Laplace variable
¢ @ time [min]
u @ assigned vanable
x o assigned vanable
W) process output
o matiix of multivariable outputs
z : assigned varniable

Greek Letters

@  vector of frequency points [ rad‘min]
T ¢ controller derivative time [min]

7, controller integral ime [min|
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