• Title/Summary/Keyword: dc

Search Result 13,316, Processing Time 0.05 seconds

A New DC-DC Converter for Gate Driver Circuit Using Low Temperature Poly-Si TFT

  • Choi, Jin-Young;Cho, Byoung-Chul;Shim, Hyun-Sook;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1011-1014
    • /
    • 2004
  • In this paper, we present a new DC-DC converter for gate driver circuit in low temperature poly-Si TFT technology. It is composed of a newly developed charge pump circuit and a regulator circuit. When the input voltage is 5V, the efficiency of a positive charge pump used in the DC-DC converter and that of a negative charge pump is 69.0% and 57.1%, respectively. The output voltage of DC-DC converter varies 200mV when the target voltages of DC-DC converter are 9V, -6V and the threshold voltage of TFTs varies ${\pm}$ 0.5V.

  • PDF

DC Voltage Balancing Control Scheme for a Cascade Multilevel Inverter (직렬 연결형 다중 레벨 컨버터를 위한 DC전압 평형화 기법)

  • Song O.S.;Lim J.S.;Nam K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.341-344
    • /
    • 2003
  • 직렬연결형 다중레벨 컨버터(cascade multilevel converter)는 각기 절연된 DC전압원과 H-bridge 인버터가 한 단위를 이루고, 각 단위 인버터의 출력을 직렬 연결한 구조로서, 부하(전동기)에 정현파에 가까운 전압을 인가할 수 있는 시스템이다 각 H-bridge인버터의 DC전압원으로는 배터리 또는 커패시터등이 사용되는데, 일반적인 경우 각 H-bridge 컨버터의 입출력 파워가 틀려지게 되며, 따라서 DC전압간 불균형이 발생하게 된다. DC전압간 불균형이 발생하면 원하는 전압벡터를 정확하게 발생시킬 수 없게 되고, 고조파 하모닉이 만들어질뿐 아니라, 경우에 따라서는 DC전압원측에과 전압 또는 저전압 폴트가 발생할 수 있다. 본 논문은 N개의 H-bridge 인버터의 DC전압을 측정하지 않고, 전체 상출력 전압만을 측정하여 각 DC전압을 추정하고, 스위칭 패턴을 변경하여 DC전압을 평형화하는 방법을 제안한다. 모의실험을 통해서 알고리즘의 동작여부를 검증하였다.

  • PDF

A Study on Efficiency of Active Clamp Type DC-DC Converter (능동 클램프형 DC-DC 컨버터의 효율에 관한 연구)

  • Yon J.S.;Ahn T.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.49-53
    • /
    • 2003
  • In this paper, to analyze efficiency characteristic, one of important factors in design of DC-DC converter prototype, theoretically derived power loss of individual components generating in DC-DC converter and compared theoretical results with experimental results. For evaluation of results, active clamp type Forward DC-DC converter with synchronous rectifier was composed of experimental converter. Efficiency result measured in experimental converter was compared with theoretical efficiency result derived in this paper. In comparative results, a fact that derived theoretical value and experimental value comparatively correspond have been able to verify.

  • PDF

A novel three-phase power system for a simple photovoltaic generator (태양광발전을 위한 새로운 3상한 시스템에 관한 연구)

  • Park, Sung-Joon;Kim, Jung-Hun;Kim, Jin-Young;Kim, Jeoung-Hyun;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.181-184
    • /
    • 2005
  • Operating conditions of photovoltaic power generator is very sensitive to the PV modules. The PV module's control is an importance issue in the removing DC ripple noise. In this paper, the phase-shifted-carrier technique, which is a new three-step dc-dc power multi-converter schemes, is applied to solar generator system to improve the output current waveform. The novel type of three-step dc-dc converter presented has many features such as the good output waveform, high efficiency, low switching losses, low acoustic noise. The circuit configuration is constructed by the conventional full-bridge type converter circuit using the isolated DC power supply for which the solar cell is very suitable. In the end, a circuit design for understanding three-step dc-dc converter and new solar power system were presented

  • PDF

A Research on the Fault Current of DC distribution system considering Converter Characteristics (DC배전 시스템에서 컨버터 특성에 따른 수용가측 고장 영향 분석)

  • Yoon, Tae-Young;Byeon, Gil-Sung;Lee, Han-Sang;Jang, Gil-Soo;Chae, Woo-Kyu;Kim, Ju-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.366-367
    • /
    • 2011
  • The DC distribution system iis a new promising topologies in a field of future smart distribution system. This system has high efficiency and reliability. So it is expected that there would be an increase in the installation of DC distribution systems. In this paper, the parameter of the DC/DC converter impact on customer's the power quailty in the DC distribution system when the fault occurred. For the analysis, DC network to be modeled using PSCAD/EMTDC. The fault is occurred at phase A in secondary side of MTR which is AC system. Then compared voltage and power at the customer side by varying the capacity of capcitor in the DC/DC converter.

  • PDF

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.

A Study on Characteristic Estimation of Single-Stage High Frequency Resonant DC-DC (단일 전력단 고주파 공진 DC-DC 컨버터의 특성평가에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Nam, Seung-Sik;Sim, Kwang-Yeal;Lee, Bong-Seob;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.318-320
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the Proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Study on DC-DC Converter for X-Ray Using Soft-Switching Method (소프트 스위칭 방식을 이용한 X-Ray용 DC-DC Converter에 관한 연구)

  • Kim, Hack-Seong;Kim, Hyen-Joon;Won, Chung-Yuen;Yoo, Dong-Wook;Ha, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.379-381
    • /
    • 1994
  • This paper is concerned with a zero-voltage soft-switching PWM DC-DC high-pelter converter using IGBTs, which Bakes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-Ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series resonant full-bridge PWM DC-DC high-Power converter operating at a constant frequency:20kHz. This technique brings about dramatic decreases in the switching losses of power devices and their electrical stresses as compared with the commonly-used hard-switching PWM DC-DC power converter. The high-frequency switching operation of the converters has some effective advantages, which consist in the physical reduction in size and weight and lowered acoustic noise.

  • PDF

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

VLSI Design of Low Voltage DC/DC Converter using Zero Voltage Switching Technique (Zero Voltage Switching을 이용한 저전압 DC/DC 컨버터의 고집적회로 설계)

  • 전재훈;김종태;홍병유
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.564-571
    • /
    • 2001
  • This paper presents the VLSI design of highly efficient low voltage DC/DC converter for portable devices. All active devices are integrated on a single chip using a standard 0.65$\mu\textrm{m}$ CMOS process. The converter operates at the switching frequency of 1MHz for reducing the size of passive elements and uses a ZVS for minimizing the switching loss at high frequency. Simulation results show that the circuit can achieve a 95% efficiency when the output voltage is controlled to be 2V with the load of lW.

  • PDF