• Title/Summary/Keyword: db/db-mice

Search Result 176, Processing Time 0.023 seconds

Antidiabetic Effect of Herbal Formula Containing Mori Folium, Euonymi Lignum Suberalatum and Ginseng Radix in db/db Mice (db/db 마우스에서 상엽, 귀전우, 인삼 복합처방의 항당뇨 활성)

  • Park, Keum-Ju;Han, Eun-Jung;Choi, Yun-Sook;Han, Gi-Cheol;Park, Jong-Seok;Chung, Sung-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.10-14
    • /
    • 2007
  • Type 2 diabetes mellitus relavant to insulin resistance is a chronic and hard to control. In order to develop an antidiabetic agent from natural products, anti-hyperglycemic effect of herbal formula containing Mori Follium, Euonymi Lignum Suberalatum and Ginseng Radix(MEG) was investigated in db/db mice. Treatment group was administered orally with MEG formula at a dose of 300 mg/kg for 5 weeks, and blood glucose, insulin and lipid levels were determined. MEG treatment group showed a marked decrease in fasting blood glucose level and insulin resistance index(IRI) compared to those in diabetic control. Improvement of insulin resistance(60.6%) was indicative of reducing lipid levels in plasma and triglyceride contents in muscle and adipose tissue. In addition, expressions of an insulin responsive gene, glucose transporter 4(Glut4), in muscle and adipose tissue were upregulated in MEG treatment group. Compared islet morphology between groups, MEG formula prevented the ${\beta}$-cell destruction caused by high blood glucose. Taken together, MEG formula can act as an anti-hyperglycemic agent with insulin sensitizing effect, and thus deserves a clinical trial in the future.

Effect of Bambusae Caulis in Liquamen Manufactured by Different Production Process and Rosa rugosa on Blood Sugar in db/db Mice (생산공법차이에 따른 죽력에 민괴화근을 배합한 약물이 db/db mouse의 혈당강하에 미치는 영향)

  • Hwang, Jin-Seok;Jang, Kyeong-Seon;Kim, Jin-Keun;Choi, Chan-Hun;Oh, Young-Joon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.928-933
    • /
    • 2005
  • This study was carried out to understand the effects of Bambusae Caulis in Liquamen manufactured by different production process and Rosa rugosa on blood sugar in the db/db mice. Bambusae Caulis in Liquamen(L-BCL, H-BCL) manufactured by low or high temperature production process and Rosa rugosa were used. The effects of L-BCL, L-BCL+Rosa rugosa, H-BCL and H-BCL+Rosa rugosa were observed in terms of blood sugar, creatinine, BUN, ALT in db/db mice. The results were as follows : The amount of glucose was significantly decreased (P<0.01) in the experimental groups compared with the control. The amount of Creatinine ovserved decrease in the case of L-BCL group. The amount of blood urea nitrogen observed significant decrease in the case of H-BCL and H-BCL+Rosa rugosa groups. The amount of ALT did not show any differences among five groups.

Mountain cultivated ginseng water boiled extract decreases blood glucose level and improves lipid metabolism in male db/db mice (산양산삼(山養山蔘) 열수추출물이 db/db 마우스 당뇨모델에서 혈중 지질대사와 혈당에 미치는 영향)

  • Kim, Eung-Lae;Kim, Chang-Sik;Lee, Hee-Young;Lee, Hye-Rim;Kim, Eung-Yeol;Yoon, Mi-Chung;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • Objectives : We investigated the effects of mountain cultivated ginseng water boiled extract(MCG) on blood glucose and insulin levels, and examined whether lipid metabolism are improved by it in male db/db mice(a murine model of type 2 diabetes mellitus). Methods : 9 weeks old, male db/db mice were divided into 5 groups : C57BL/6J normal, control, MCG-250mg/kg (MCG-1), MCG-500mg/kg(MCG-2) and MCG-1000mg/kg(MCG-3). After mice were treated with MCG for 8 weeks, we measured body weight, food intake, fat weight, visceral organ weight and blood glucose, insulin and lipid levels. Results : 1. We found no difference in body weight, food intake, fat weight and visceral organ weight among the animal groups. 2. Compared with controls, MCG-treated mice had lower blood glucose level and higher blood insulin levels, the magnitude of which was prominent in MCG-2. 3. Compared with controls, MCG-treated mice had lower LDL-cholesterol and higher HDL-cholesterol levels. 4. Compared with controls, MCG-treated mice had blood triglyceride and free fatty acid levels, the magnitude of which was prominent in MCG-2. 5. Blood AST and ALT concentrations were not changed by MCG, indicating MCG do not show any toxic effects. Conclusions : These results demonstrate that MCG effectively increases blood insulin level and decreases blood glucose level, blood lipid levels, and prevents and improves diabetic dyslipidemia and cardiovascular disease.

Effects of Taeeumjowuitanggagam-bang on the Expression of Adipocytokines and SREBPs in Liver of db/db Mouse (태음조위탕가감방(太陰調胃湯加減方)의 db/db 마우스 간(肝)에 대한 아디포사이토카인 및 SREBPs의 발현에 미치는 영향)

  • Baek, Jong-Woo;Jeong, Mi-Kyung;Ko, Seong-Gyu;Jun, Chan-Yong;Park, Jong-Hyeong;Choi, You-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.989-995
    • /
    • 2010
  • The aim of this study was to investigate the effect of Taeeumjowuitanggagam-bang(TJV) on the mRNA expression of adipocytokines (TNF-${\alpha}$ and IL-6), and SREBPs. Mice were divided into 4 groups ; a normal group of db/+ mice, a control group of db/db mice, a group (db/db mice) treated with TJV 200 mg/kg, and a group (db/db mouse) treated with TJV 500 mg/kg. They were treated orally with TJV and measured their body weight every other day during 9 weeks. After that, we measured the mRNA expression of adipocytokines (TNF-${\alpha}$ and IL-6) and SREBPs (SREBE-1a and SREBP-1c) in liver, and blood concentration of total cholesterol, triglyceride, too. In addition, liver samples were fixed in 4% PFA for 2 hours and stored in $-70^{\circ}C$. Liver tissues were embedded in Optical cutting temperature(OCT) compound and 30 ${\mu}m$ sections were cut. Tissue sections were stained Oil-Red-O to visualize neutral lipids. Nuclei were stained with hematoxylin solution. In result, the TJV reduced the mRNA expressions of TNF-${\alpha}$ and IL-6 and SREBPs in liver and stained liver tissue less red than control group. However, there was no significant differences in total cholestreol and triglyceride blood concentration and body weight among groups. The TJV has inhibitory effect on the mRNA expression of adipocytokines and SREBPs. Therefore, it is assumed that the TJV is related to inhibiting lipogenesis in the liver

Effects of Silk Protein Hydrolysates on Blood Glucose and Serum Lipid in db/db Diabetic Mice (실크단백질 효소 가수분해물이 2형 당뇨 마우스의 혈당 및 혈청지질에 미치는 영향)

  • Shin, Mi-Jin;Park, Min-Jeong;Youn, Myung-Sub;Lee, Young-Sook;Nam, Moon-Suk;Park, In-Sun;Jeong, Yoon-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1343-1348
    • /
    • 2006
  • This study was performed to investigate the effects of silk protein enzyme hydrolysates on blood glucose and serum lipid in db/db diabetic mice. Twelve week-old-male C57BL/KsJ db/db mice were divided into two groups: diabetic control group and 0.25% silk protein hydrolysates solution group, which were fed for 8 weeks. Body weight increased in the silk protein hydrolysates group compared with the diabetic control group. There were no differences in food and water intake between the diabetic control and the silk protein hydrolysates groups. The weight of liver increased in the silk protein hydrolysates group while that of kidney increased in the diabetic control group. The blood glucose level increased about 18.0% in the diabetic control group after 8 weeks while that in the silk protein hydrolysates group increased about 5.8%. Also, silk protein hydrolysates improved the glucose tolerance in C57BL/KsJ db/db mice. There was no difference in total cholesterol and non-HDL cholesterol concentration between the diabetic control and the silk protein hydrolysates group. Triglyceride concentration were lower in the silk protein hydrolysates group than in the diabetic control group (p<0.05) while HDL-cholesterol concentration were higher in the silk protein hydrolysates group than in the diabetic control group (p<0.05). This results suggest that administration of silk protein enzyme hydrolysates reduces significantly an increasing rate of 1]food glucose, decreases triglyceride, and increases HDL-cholesterol in C57BL/KsJ db/db mice.

Effect of Korean Turbid Rice Wine (Takju) Lees Extract on Blood Glucose in the db/db Mouse (막걸리박 열수추출물이 db/db mouse에서 혈당에 미치는 영향)

  • Lee, Hyun-Sook;Hong, Kyoung-Hee;Yoon, Cheol-Ho;Kim, Jae-Min;Kim, Soon-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.2
    • /
    • pp.219-223
    • /
    • 2009
  • We investigated the effect of Takju lees extract on blood glucose levels in the db/db mice (a murine model of type 2 diabetes mellitus). We fed 40 male db/db mice a control diet (G0, AIN93G) and experimental diets containing 1% (G1), 2% (G2), or 4% (G4) Takju lees extract for 4 weeks. We found no difference in food intake and body weight gain among the animal groups. In the G1 and G2 groups, plasma glucose levels decreased significantly between Days 10 and 21 compared with the G0 group. However, we found no difference in plasma glucose levels between groups G4 and G0. The change in insulin concentrations was not significant among these animal groups, and we found no significant difference in glucose transporter 4 (GLUT4) expression in the soleus muscle. These results suggest that the Takju lees extract has a beneficial effect in animals with type 2 diabetes.

Antidiabetic effects of unripe black raspberry ethanol extracts in C57BL/6N db/db mice (C57BL/6N db/db 생쥐에서 복분자 미숙과 에탄올 추출물의 항당뇨 효과)

  • Choi, Hye Ran;Lee, Su Jung;Ryu, Tae Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.391-397
    • /
    • 2022
  • This study aimed to verify the antidiabetic effects of the unripe black raspberry extract (UBRE) in obese diabetic mice. For the experiment, animal model mice were divided into six groups: normal control, diabetic control, three experimental groups (treated with 75, 150, and 300 mg/kg single dose of UBRE), and a positive control (200 mg/kg metformin). The groups treated with 300 mg/kg UBRE and metformin had significantly reduced blood glucose and triglyceride levels in the diabetic mice compared to those in the vehicle control group. In addition, histopathological evaluation showed that UBRE increased the Langerhans area, cell number, and insulin concentration in the pancreatic islets of db/db mice. Therefore, UBRE exerts significant antidiabetic effects by decreasing the blood glucose and lipid levels, suggesting that it can be consumed as a functional diet for diabetic patients.

Blood Glucose Lowering Activity and Mechanism of Sangbackpitang (SBPT) in db/db Mouse (db/db 마우스에서 상백피탕의 혈당강하 활성 및 기전연구)

  • 이성현;안세영;두호경;정성현
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.818-826
    • /
    • 1999
  • Antidiabetic activity and mechanism of Sangbackpitang (SBPT) was examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model. SBPT and acarbose were administered orally for 4 weeks. Fasting and non-fasting serum glucose, glycated hemoglobin and triglyceride were all reduced when compared between db/db control group and SBPT treated group. At 12th week after birth, SBPT increased an insulin secretion although statistic significance was not seen. Total activities of sucrase, maltase and lactase in SBPT treated group were all decreased when compared to db/db control. On the other hand, sucrase and maltase activities in acarbose treated groups were increased. Effect of SBPT on mRNA expression of glucose transporter(GLUT-4) was also examined. Quantitation of glucose transporter was performed by RT-PCR and in vitro transcription with co-amplification of rat-action gene as an internal standard. Muscular GLUT-4 mRNA expression in SBPT treated group was increased significantly. These results may suggest that SBPT lowered blood glucose ascribing to inhibition of glycosidase-catalyzed reaction and upregulation of muscular GLUT-4 mRNA expression.

  • PDF

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Ethanol Extract of Dioscorea batatas Stimulates Procollagen Production and Reduces UVB-induced MMPs Activity in Skin (마 에탄올추출물의 피부 collagen 합성 촉진 및 MMPs 활성 억제효과)

  • Kim, Dae Sung;Jeon, Byoung Kook;Lim, Nan Young;Mun, Yeun Ja;Lee, Young Eun;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 2013
  • Ultraviolet (UV) B irradiation induces the production of matrix metalloproteinases (MMPs), which are responsible for the degradation or synthesis inhibition of collagenous extracellular matrix in connective tissues, causing skin photoaging. In this study, we examined the inhibitory effect of MMP-1 expression of yam extract in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated human dermal fibroblast neonatal (HDFn) cell and preventive effect of UVB-induced damage in hairless mice skin. The synthesis of procollagen and the release of MMP-1 in HDFn cells were measured by EIA kit and MMP-1 assay kit, respectively. UVB radiation was applied to the backs of the mice three times a week for 8 weeks. Mice were randomly divided into three groups, and were topical application with the Dioscorea batatas (DB, 6%) or vehicle. Reduction of TNF-${\alpha}$-induced procollagen synthesis was increased by DB (50 ug/ml), which was higher than positive control group (TGF-${\beta}$). Also, pre-treatment of HDFn cells with DB inhibited TNF-${\alpha}$-induced release of MMP-1. In vivo study, we found that preventive effect of DB against UV-induced epidermal thickness. DB suppressed the expression of MMP-3 and MMP-13 induced by UVB irradiation. Our results show that DB have preventive effect of UV-induced skin damage in hairless mice.