• 제목/요약/키워드: dataset

검색결과 4,026건 처리시간 0.031초

기계학습을 이용한 지진 취약성 평가 및 매핑: 9.12 경주지진을 대상으로 (Seismic Vulnerability Assessment and Mapping for 9.12 Gyeongju Earthquake Based on Machine Learning)

  • 한지혜;김진수
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1367-1377
    • /
    • 2020
  • 본 연구는 2016년 발생한 9.12 경주지진을 중심으로 경주시 건축물의 지진 취약성을 평가하고 지도를 제작하는데 목적이 있다. 지진 취약성을 평가하기위해 지질공학, 물리, 구조적 요인과 관련된 11개의 영향인자를 선정하였으며, 이는 독립변수로 적용되었다. 종속변수로는 9.12 경주지진 당시 실제 피해 입은 건축물의 위치자료가 사용되었다. 평가 모델은 기계학습 방법의 RF와 SVM을 기반으로 구축하였으며, 훈련 및 검증 데이터셋은 70:30 비율로 무작위 선별되었다. 정확도 검증은 ROC 곡선을 사용하여 최적 모델을 선별하였으며, 각 모델의 정확도는 RF(1.000), SVM(0.998), 예측 정확도는 RF(0.947), SVM(0.926) 로 나타났다. RF 모델을 기반으로 경주시 전체 건축물의 예측 값을 도출하였으며, 이를 등급화 하여 지진 취약성 지도를 작성하였다. 행정동별 건물 등급 분포를 살펴본 결과, 황남동, 월성동, 선도동, 내남면이 취약성이 높은 지역으로, 양북면, 강동면, 양남면, 감포읍이 상대적으로 안전한 지역으로 나타났다.

MLP 기반의 서울시 3차원 지반공간모델링 연구 (MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea)

  • 지윤수;김한샘;이문교;조형익;선창국
    • 한국지반공학회논문집
    • /
    • 제37권5호
    • /
    • pp.47-63
    • /
    • 2021
  • 최근 디지털 트윈 관점의 3차원 지하공간 지도의 수요 및 유관분야의 연계 활용 요구가 증대되고 있다. 그러나 전국단위의 지반조사 자료의 방대함과 이를 활용함에 있어 공간적/추계학적 기법 적용의 불확실성으로 인해 신뢰도 높은 지역적 지반특성화 연구와 그에 따른 최적화 모델 제시에 어려움이 있다. 따라서 본 연구에서는 서울지역 3차원 지하공간의 공학적 지층분류를 위해 다층 퍼셉트론(MLP) 기반의 최적 학습모델을 구축하였다. 먼저, 서울지역에 분포하는 시추공별 층상구조 및 3차원 공간좌표를 표준화 서식에 따라 지반정보 데이터베이스로 구축하고 기계학습을 위한 결측치 보정, 정규화 등의 데이터 전처리를 하였다. MLP 모델의 파라미터 최적화와 정밀도 및 정확도 관련 모델 성능 평가를 통해 최적의 피팅 모델을 설계하였다. 이후 3차원 지반 공간레이어 구축을 위한 수치표고모델 기반 격자망을 구성하고, 단위격자별 MLP기반 예측모델 적용을 통한 층상구조를 결정하고 이를 가시화하였다. 구축된 3차원 지반모델은 범용적인 지구통계학적 공간보간 기법의 적용 결과 및 지질도의 표토층 성상과 비교하여 그 성능을 평가하였다.

Comparative Analysis of Anomaly Detection Models using AE and Suggestion of Criteria for Determining Outliers

  • Kang, Gun-Ha;Sohn, Jung-Mo;Sim, Gun-Wu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.

충남 신혼부부의 공공임대주택 수요 추정과 정책적 함의 (The Estimation of the Demand of Newly Married Couples for Public Rental Housing in Chungnam)

  • 홍성효;임준홍
    • 토지주택연구
    • /
    • 제13권1호
    • /
    • pp.11-22
    • /
    • 2022
  • 본 논문은 충남 신혼부부의 공공임대주택에 대한 수요를 추정한다. 이는 조사자료와 행정자료를 연계하여 분석함으로써 자료의 한계를 일정 부분 극복한다는 점에서 관련 선행연구와 차별화될 수 있다. 먼저, 충남사회조사 2019년 자료를 이용한 신혼부부의 공공임대주택 입주의향에 대한 이항로짓모형 추정결과는 거주지, 학력수준, 주택유형, 차가 주택점유 여부가 통계적으로 유의한 영향을 미침을 제시한다. 추정된 계수들을 행정을 위한 통계청의 신혼부부통계에 연결하여, 충남 신혼부부의 공공임대주택에 대한 수요량을 추정할 수 있다. 추정결과에 의하면, 충남 전체 신혼부부 43,705쌍의 공공임대주택에 대한 수요는 11,424호이며, 차가주택을 점유하고 있는 신혼부부 21,685쌍에 의한 수요는 9,436호로 추정된다. 향후, 충남도에서 신혼부부를 대상으로 공공임대주택을 공급하고자 하는 주된 이유가 이들의 출산율을 제고하기 위함임을 고려할 때, 공급에 따른 출산율 제고의 효과에 대한 추정을 고민할 필요가 있을 것이다. 다만, 공공임대주택에 대한 수요와 자녀 출산 간 나타날 수 있는 내생성 문제를 통제하기 위한 방법론에 대한 고민이 필요할 것이다.

공원 분석 지표 개발 및 현황 분석: 대전광역시를 중심으로 (The Development of Park Analysis Indicators and Current Status: A Case Study of Daejeon Metropolitan City)

  • 황재연;곽승연;김상규;박민주
    • 토지주택연구
    • /
    • 제13권1호
    • /
    • pp.99-112
    • /
    • 2022
  • 최근 무분별한 택지개발과 아파트 건설 등으로 도시공원의 확보와 접근성이 크게 강조되고 있다. 이에 따라 대전광역시도 낙후공원을 정비하고 새로운 공원을 조성하는 도시공원 관리사업을 추진하고 있다. 대전광역시는 행정구역별 공원 관리를 위해 공원데이터를 생성·관리하고 있는데 행정구별로 다른 데이터 양식을 가지고 있다. 본 연구는 행정구역별로 생성된 공원 데이터를 하나의 양식으로 통합하고, 공원의 면적 정보를 반영하는 지리 정보 데이터를 생성해 대전 전체에 존재하는 공원들의 현황을 분석했다. 공원의 현황을 분석했을 때 행정구역별 공원의 불균형이 심하다는 사실을 확인할 수 있었고, 불균형을 해소하기 위한 새로운 정책 방안이 필요하다는 결과를 도출할 수 있었다. 또한 현황 진단 결과를 정규화한 후 순위로 도출하여 세부적인 분석을 진행하여 실제 공원들과 분석 결과를 비교 후 데이터가 공원에 대한 정보를 잘 담고 있는지 살펴봤다. 본 연구에서 도출된 평가 결과를 바탕으로 도시공원에 대한 개선방안을 강구할 수 있고, 선행연구를 기반으로 공원 평가 지표를 구성하여 공원을 객관화할 수 있는 기초 자료를 형성하여 행정구역별 통합된 데이터 양식과 꾸준한 관리를 위해 데이터베이스의 필요성에 대해 제안하고자 한다.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.13-23
    • /
    • 2022
  • Prasad et al.는 사전학습(pre-trained)한 신경망 L1 글로다바(Gulordava) 언어모델을 여러 유형의 영어 관계절과 등위절 문장들로 적응 학습(adaptation learning)시켜 문장 간 유사성(sentence similarity)을 평가할 수 있는 통사 프라이밍(syntactic priming)-기반 프로빙 방법((probing method)을 제안했다. 본 논문에서는 한국인 영어학습자가 배우는 영어 자료를 바탕으로 훈련된 L2 LSTM 신경망 언어 모델의 영어 관계절 혹은 등위절 구조의 문장들에 대한 임베딩 표현 방식을 평가하기 위하여 프로빙 방법을 적용한다. 프로빙 실험은 사전 학습한 LSTM 언어 모델을 기반으로 추가로 적응 학습을 시킨 LSTM 언어 모델을 사용하여 문장 임베딩 벡터 표현의 통사적 속성을 추적한다. 이 프로빙 실험을 위한 데이터셋은 문장의 통사 구조를 생성하는 템플릿을 사용하여 자동으로 구축했다. 특히, 프로빙 과제별 문장의 통사적 속성을 분류하기 위해 통사 프라이밍을 이용한 언어 모델의 적응 효과(adaptation effect)를 측정했다. 영어 문장에 대한 언어 모델의 적응 효과와 통사적 속성 관계를 복합적으로 통계분석하기 위해 선형 혼합효과 모형(linear mixed-effects model) 분석을 수행했다. 제안한 L2 LSTM 언어 모델이 베이스라인 L1 글로다바 언어 모델과 비교했을 때, 프로빙 과제별 동일한 양상을 공유함을 확인했다. 또한 L2 LSTM 언어 모델은 다양한 관계절 혹은 등위절이 있는 문장들을 임베딩 표현할 때 관계절 혹은 등위절 세부 유형별로 통사적 속성에 따라 계층 구조로 구분하고 있음을 확인했다.

딥러닝 기반의 Multi Scale Attention을 적용한 개선된 Pyramid Scene Parsing Network (Modified Pyramid Scene Parsing Network with Deep Learning based Multi Scale Attention)

  • 김준혁;이상훈;한현호
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.45-51
    • /
    • 2021
  • 딥러닝의 발전으로 인하여 의미론적 분할 방법은 다양한 분야에서 연구되고 있다. 의료 영상 분석과 같이 정확성을 요구하는 분야에서 분할 정확도가 떨어지는 문제가 있다. 본 논문은 의미론적 분할 시 특징 손실을 최소화하기 위해 딥러닝 기반 분할 방법인 PSPNet을 개선하였다. 기존 딥러닝 기반의 분할 방법은 특징 추출 및 압축 과정에서 해상도가 낮아져 객체에 대한 특징 손실이 발생한다. 이러한 손실로 윤곽선이나 객체 내부 정보에 손실이 발생하여 객체 분류 시 정확도가 낮아지는 문제가 있다. 이러한 문제를 해결하기 위해 의미론적 분할 모델인 PSPNet을 개선하였다. 기존 PSPNet에 제안하는 multi scale attention을 추가하여 객체의 특징 손실을 방지하였다. 기존 PPM 모듈에 attention 방법을 적용하여 특징 정제 과정을 수행하였다. 불필요한 특징 정보를 억제함으로써 윤곽선 및 질감 정보가 개선되었다. 제안하는 방법은 Cityscapes 데이터 셋으로 학습하였으며, 정량적 평가를 위해 분할 지표인 MIoU를 사용하였다. 실험을 통해 기존 PSPNet 대비 분할 정확도가 약 1.5% 향상되었다.

보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법 (A non-merging data analysis method to localize brain source for gait-related EEG)

  • 송민수;정지욱;지인혁;추준욱
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.679-688
    • /
    • 2021
  • 보행능력은 의학적으로 다양한 뇌신경계 질환에서 사용되는 평가 지표이다. 보행에 관련된 뇌 활성화를 측정하고 분석하는 방법으로 뇌파 데이터에 대해 독립성분을 추출한 뒤 신호원 추정 및 시간-주파수 분석이 주로 사용된다. 기존의 트레드밀 기반 보행 뇌파 분석은 분할 측정한 뒤, 데이터를 병합하여 신호 전처리, 독립성분분석 및 신호원 추정을 수행하고 피험자 간 군집화를 통하여 대표 성분 클러스터들을 추출한다. 본 연구에서는 보행 뇌파에 대하여 데이터 통합 없이 각각의 분할 측정된 데이터에 대하여 개별적으로 신호 전처리, 독립성분분석 및 신호원 추정을 수행하고 모든 피험자로부터 추정된 독립성분에 대하여 피험자 간 군집화를 수행하는 새로운 방법을 제안한다. 데이터 통합이 독립성분 군집화 및 시간-주파수 분석에 미치는 영향을 조사하기 위해 기존의 통합 데이터에 기반한 두 가지 분석 방법과 본 연구에서 제안하는 데이터 통합이 없는 분석 방법을 비교하였다. 그 결과, 통합 데이터 방법들에서는 각각 2개씩의 성분 클러스터를 도출하였으나 제안하는 방법을 통해 4개의 성분 클러스터를 도출, 적은 피험자 수에도 불구하고 세분화된 보행 뇌 신호 성분 클러스터를 도출할 수 있었음을 확인하였다.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구 (A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique)

  • 나종호;이수득;신휴성
    • 터널과지하공간
    • /
    • 제32권2호
    • /
    • pp.131-143
    • /
    • 2022
  • 달 현지 탐사를 위해 무인 이동체가 활용되고 있으며, 달 지상 관심 지역의 지형 특성을 정확하게 파악하여 실시간으로 정보화 하는 작업이 요구된다. 하지만, 정확도 높은 지형/지물 객체 인식 및 영역 분할을 위해서는 다양한 배경조건의 영상 학습데이터가 필요하며 이러한 학습데이터를 구축하는 과정은 많은 인력과 시간이 요구된다. 특히 대상이 쉽게 접근하기 힘든 달이기에 실제 현지 영상의 확보 또한 한계가 있어, 사실에 기반하지만 유사도 높은 영상 데이터를 인위적으로 생성시킬 필요성이 대두된다. 본 연구에서는 가용한 중국의 달 탐사 Yutu 무인 이동체 및 미국의 Apollo 유인 착륙선에서 촬영한 영상을 통해 위치정보 기반 스타일 변환 기법(Style Transfer) 모델을 적용하여 실제 달 표면과 유사한 합성 영상을 인위적으로 생성하였다. 여기서, 유사 목적으로 활용될 수 있는 두 개의 공개 알고리즘(DPST, WCT2)를 구현하여 적용해 보았으며, 적용 결과를 시간적, 시각적 측면으로 비교하여 성능을 평가하였다. 평가 결과, 실험 이미지의 형태 정보를 보존하면서 시각적으로도 매우 사실적인 영상을 생성할 수 있음을 확인하였다. 향후 본 실험의 결과를 바탕으로 생성된 영상 데이터를 지형객체 자동 분류 및 인식을 위한 인공지능 학습용 영상 데이터로 추가 학습된다면 실제 달 표면 영상에서도 강인한 객체 인식 모델 구현이 가능할 것이라 판단된다.