DOI QR코드

DOI QR Code

A non-merging data analysis method to localize brain source for gait-related EEG

보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법

  • Song, Minsu (Dept. of Medical Device, Daegu Research Center for Medical Devices and Rehabilitation Engineering, Korea Institute of Machinery and Materials) ;
  • Jung, Jiuk (Dept. of Medical Device, Daegu Research Center for Medical Devices and Rehabilitation Engineering, Korea Institute of Machinery and Materials) ;
  • Jee, In-Hyeog (School of Electronics Engineering, Kyungpook National University) ;
  • Chu, Jun-Uk (Dept. of Medical Device, Daegu Research Center for Medical Devices and Rehabilitation Engineering, Korea Institute of Machinery and Materials)
  • Received : 2021.11.18
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

보행능력은 의학적으로 다양한 뇌신경계 질환에서 사용되는 평가 지표이다. 보행에 관련된 뇌 활성화를 측정하고 분석하는 방법으로 뇌파 데이터에 대해 독립성분을 추출한 뒤 신호원 추정 및 시간-주파수 분석이 주로 사용된다. 기존의 트레드밀 기반 보행 뇌파 분석은 분할 측정한 뒤, 데이터를 병합하여 신호 전처리, 독립성분분석 및 신호원 추정을 수행하고 피험자 간 군집화를 통하여 대표 성분 클러스터들을 추출한다. 본 연구에서는 보행 뇌파에 대하여 데이터 통합 없이 각각의 분할 측정된 데이터에 대하여 개별적으로 신호 전처리, 독립성분분석 및 신호원 추정을 수행하고 모든 피험자로부터 추정된 독립성분에 대하여 피험자 간 군집화를 수행하는 새로운 방법을 제안한다. 데이터 통합이 독립성분 군집화 및 시간-주파수 분석에 미치는 영향을 조사하기 위해 기존의 통합 데이터에 기반한 두 가지 분석 방법과 본 연구에서 제안하는 데이터 통합이 없는 분석 방법을 비교하였다. 그 결과, 통합 데이터 방법들에서는 각각 2개씩의 성분 클러스터를 도출하였으나 제안하는 방법을 통해 4개의 성분 클러스터를 도출, 적은 피험자 수에도 불구하고 세분화된 보행 뇌 신호 성분 클러스터를 도출할 수 있었음을 확인하였다.

Keywords

Acknowledgement

This research was supported by the National Research Council of Science and Technology (NST) grant by the Korea government (MSIT) (No. CAP-18014-000).

References

  1. M. Beninato, A. Fernandes, L. S. Plummer, "Minimal Clinically Important Difference of the Functional Gait Assessment in Older Adults," Phys Ther., Vol.94, No.11 pp.1594-1603, 2014. DOI: 10.2522/ptj.20130596
  2. D. M. Wrisley, N. A. Kumar, "Functional gait assessment: concurrent, discriminative, and predictive validity in community-dwelling older adults," Phys Ther., Vol.90, No.5, pp.761-773, 2010. DOI: 10.2522/ptj.20090069
  3. Y. Yang, Y. Wang, Y. Zhou, C. Chen, D. Xing, C. Wang, "Validity of the Functional Gait Assessment in patients with Parkinson disease: construct, concurrent, and predictive validity," Phys Ther., Vol.94, No.3, pp.392-400, 2014. DOI: 10.2522/ptj.20130019
  4. T. Ellis, J. T. Cavanaugh, G. M. Earhart, M. P. Ford, K. B. Foreman, L. E. Dibble, "Which measures of physical function and motor impairment best predict quality of life in Parkinson's disease?," Parkinsonism Relat Disord., Vol.17, No.9, pp.693-7, 2011. DOI: 10.1016/j.parkreldis.2011.07.004
  5. J. H. Lin, M. J. Hsu, H. W. Hsu, H. C. Wu, C. L. Hsieh, "Psychometric comparisons of 3 functional ambulation measures for patients with stroke," Stroke. Vol.41, No.9, pp.2021-2025, 2010. DOI: 10.1161/STROKEAHA.110.589739
  6. K. A. Garrison, C. J. Winstein, and L. Aziz-Zadeh, "The mirror neuron system: A neural substrate for methods in stroke rehabilitation," Neurorehabil Neural Repair, Vol.24, No.5, pp.404-412, 2010. DOI: 10.1177/1545968309354536
  7. S. L. Small, G. Buccino, and A. Solodkin, "The mirror neuron system and treatment of stroke," Develop. Psychobiol., Vol.54, No.3, pp.293-310, 2012. DOI: 10.1002/dev.20504
  8. T. C. Bulea, J. H. Kim, D. L. Damiano, C. J. Stanley, H. S. Park, "Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking," Front. Hum. Neurosci., Vol.9, No.247, 2015. DOI: 10.3389/fnhum.2015.00247
  9. K. L. Snyder, J. E. Kline, H. J. Huang, D. P. Ferris, "Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking," Front. Hum. Neurosci., Vol.9, No.639, 2015. DOI: 10.3389/fnhum.2015.00639
  10. M. Scherg, "Fundamentals of dipole source potential analysis," In: "Auditory evoked magnetic fields and electric potentials" (eds. F. Grandori, M. Hoke and G.L. Romani). Advances in Audiology, Vol.6. pp.40-69, 1990.
  11. R. Oostenveld, and T. F. Oostendorp, "Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull," Hum. Brain Mapp., Vol.17, pp.179-192. 2002. DOI: 10.1002/hbm.10061
  12. J. T. Gwin, K. Gramann, S. Makeig and D. P. Ferris, "Electrocortical activity is coupled to gait cycle phase during treadmill walking," Neuroimage 54, pp.1289-1296. 2011. DOI: 10.1016/j.neuroimage.2010.08.066
  13. A. R. Sipp, J. T. Gwin, S. Makeig, and D. P. Ferris "Loss of balance during balance beam walking elicits a multi-focal theta band electrocortical response," J. Neurophysiol. Vol.110, pp.2050-2060. 2013. DOI: 10.1152/jn.00744.2012
  14. J. A. Palmer, S. Makeig, K. Kreutz- Delgado, B. D. Rao, "Newton method for the ICA mixture model," 33rd IEEE International Conference on Acoustics and Signal Processing, Las Vegas, Nevada, pp.1805-1808. 2008. DOI: 10.1109/ICASSP.2008.4517982
  15. P. K. Mandal, R. Mahajan, I. D. Dinov, "Structural brain atlases: design, rationale, and applications in normal and pathological cohorts," J Alzheimers Dis., 31 Suppl 3(0 3), pp.S169-S188, 2012. DOI: 10.3233/JAD-2012-120412
  16. R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, "FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data," Computational Intelligence and Neuroscience, 2011. DOI: 10.1155/2011/156869
  17. S. J. Luck, "Event-related potentials" In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 1. Foundations, planning, measures, and psychometrics pp.523-546, 2020.
  18. S. Makeig, "Auditory Event-Related Dynamics of the EEG Spectrum and Effects of Exposure to Tones," Electroencephalography and Clinical Neurophysiology Vol.86, pp.283-293, 1993. DOI: 10.1016/0013-4694(93)90110-H
  19. M. Song, J. Kim, "A Paradigm to Enhance Motor Imagery Using Rubber Hand Illusion Induced by Visuo-Tactile Stimulus," IEEE Trans Neural Syst Rehabil Eng. Vol.27, No.3, pp.477-486, 2019. DOI: 10.1109/TNSRE.2019.2895029
  20. C. M. McCrimmon, P. T. Wang, P. Heydari, A. Nguyen, S. J. Shaw, H. Gong, L. A. Chui, C. Y. Liu, Z. Nenadic and A. H. Do, "Electrocorticographic Encoding of Human Gait in the Leg Primary Motor Cortex," Cereb Cortex., Vol.28, No.8, pp. 2752-2762. 2018. DOI: 10.1093/cercor/bhx155
  21. D. Lee and S. Quessy, "Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task," J Neurophysiol. Vol.89, No.2, pp.1039-1056. 2003. DOI: 10.1152/jn.00638.2002
  22. O. Lhomond, N. Teasdale, M. Simoneau and L. Mouchnino, "Supplementary Motor Area and Superior Parietal Lobule Restore Sensory Facilitation Prior to Stepping When a Decrease of Afferent Inputs Occurs," Front. Neurol., 9, 2019. DOI: 10.3389/fneur.2018.01132
  23. J. V. Jacobs, J. S. Lou, J. A. Kraakevik and F. B. Horak, "The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson's disease," Neuroscience, Vol.164, No.2, pp.877-885. 2009. DOI: 10.1016/j.neuroscience.2009.08.002
  24. J. N. Wood and J. Grafman, "Human prefrontal cortex: processing and representational perspectives," Nat. Rev. Neurosci., Vol.4, pp.139-147. 2003. DOI: 10.1038/nrn1033
  25. A. H. Snijders, I. Leunissen, M. Bakker, S. Overeem, R. C. Helmich, B. R. Bloem, I. Toni, "Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait," Brain, Vol.134, Pt.1, pp.59-72. 2011. DOI: 10.1093/brain/awq324
  26. M. Ranchet, I. Hoang, M. Cheminon, R. Derollepot, H. Devos, S. Perrey, J. Luaute, T. danaila and L. Paire-Ficout, "Changes in Prefrontal Cortical Activity During Walking and Cognitive Functions Among Patients With Parkinson's Disease", Front. Neurol., Vol.11, 2020. DOI: 10.3389/fneur.2020. 601686