1 |
Yeong-Tae Baek, Jae-Gyu Sim, Chan-Young Pak, Se-Hoon Lee, PCB Defect Inspection using Deep Learning. KSCI, pp. 325-326, 2018.
|
2 |
Chul-jin, Park. A study on the quality information management for preventing human errors at quality of ship.. Ulsan University Graduate School of Automotive Vessel Technology, 2016, UCI:I084:48009-000002213977.
|
3 |
E.S. Lee, H.C. Bae, H.J. Kim, H.N. Han, Y.K. Lee, J.Y. Son, Trends in AI Technology for Smart Manufacturing in the Future. Electronics and telecommunications trends, Vol.35, No.1, pp. 60-70, 2020, DOI:10.22648/ETRI.2020.J.350106.
DOI
|
4 |
Raghavendra Chalapathy and Sanjay Chawla, Deep Learning for Anomaly Detection: A Survey. CoRR, (abs/1901.03407), 2019.
|
5 |
Alberto Tellaeche Iglesias, Miguel Angel Campos Anaya, Gonzalo Pajares Martinsanz and Iker Pastor-Lopez, On Combining Convolutional Autoencoders and Support Vector Machines for Fault Detection in Industrial Textures, Sensors, 21(10), 3339, 2021, DOI:10.3390/s21103339.
DOI
|
6 |
Jungsuk Kim,Jungbeom Ko,Hojong Choi and Hyunchul Kim, Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder, Sensors, 21(15), 4968, 2021, DOI:10.3390/s21154968.
DOI
|
7 |
Jonathan Masci, Ueli Meier, Dan Ciresan, and Jurgen Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction. In International Conference on Artificial Neural Networks, ICANN, pp. 52-59, 2011, DOI:10.1007/978-3-642-21735-7_7.
DOI
|
8 |
Robert Muller, Fabian Ritz, Steffen lllium, Claudia Linnhoff-Popien, Acoustic Anomaly Detection for Machine Sounds based on ImageTransfer Learning, CVPR, 2021, DOI:10.5220/0010185800490056.
DOI
|
9 |
Omid E. David, Nathan S.Netanyahu, DeepPainter: Painter Classification Using Deep Convolutional Autoencoders. ICANN, Vol.9887, pp. 20-28, 2016, DOI:10/1007/978-3-319-44781-0_3.
|
10 |
Diederik P Kingma and Max Welling, Auto-encoding variational bayes. ICLR. arXiv preprintarXiv:1312.6114, 2013.
|
11 |
Taeu Kim, https://taeu.github.io/paper/deeplearning-paper-vae/.
|
12 |
Sunil Park, Taeho Oh, Application of Receiver Operating Characteristic(ROC) Curve for Evaluation of Diagnostic Test Performance. Journal of Veterinary Clinics, pp. 97-101, 2016, DOI:10.17555/jvc.2016.04.33.2.97.
DOI
|
13 |
Shengyuan Piao and Jiaming Liu, Accuracy improvement of unet based on dilated convolution. Journal of Physics: Conference Series. Vol. 1345. No. 5. IOP Publishing, 2019, DOI:10.1088/1742-6596/1345/5/052066.
DOI
|
14 |
Jinwon An and Sungzoon Cho, Variational Autoencoder based AnomalyDetection using Reconstruction Probability. Technical Report, SNU Data MiningCenter, pp. 1-18, 2015.
|
15 |
VESAL.Sulaiman, RAVIKUMAR.Nishant, MAIER.Andreas. A 2D dilated residual U-Net for multi-organ segmentation in thoracic CT. arXiv preprint arXiv:1905.07710, 2019.
|
16 |
Ravirajsinh Dabhi, Casting product image data for quality inspection, Kaggle, https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product.
|
17 |
The Nature of Statistics Bigpicture, Statistics Basics Lecture 1. Mean, Deviation, Variance, Standard Deviations, https://hsm-edu.tistory.com/1182
|
18 |
Garlic, https://m.blog.naver.com/yk60park/222100758577
|
19 |
Wikipedia, Entropy(Information Theory), https://en.wikipedia.org/wiki/Entropy_(information_theory)
|
20 |
Kim, Chungyun, Evaluation Method of Classification Model, https://velog.io/@skyepodium/%EB%B6%84%EB%A5%98-%EB%AA%A8%EB%8D%B8-%ED%8F%89%EA%B0%80-%EB%B0%A9%EB%B2%95.
|
21 |
Jakub Czakon, https://neptune.ai/blog/f1-score-accuracy-roc-aucpr-auc
|
22 |
Ho Young, Lee. Changes in labour demand and acceptability due to the Fourth Industrial Revoluation. Korea Information Society Development, 2019.
|
23 |
CityWizard, https://m.blog.naver.com/PostView.naver?blogId=y4769&logNo=220505513170&proxyReferer=https:%2F%2Fwww.google.com%2F
|