This paper deals with differentiability of solutions of neutral stochastic differential equations with respect to the initial data in the G-framework. Since the initial data belongs to the space BC ([-r, 0] ; ℝn) of bounded continuous ℝn-valued functions defined on [-r, 0] (r > 0), the derivative belongs to the Banach space 𝓛BC (ℝn) of linear bounded operators from BC ([-r, 0] ; ℝn) to ℝn. We give the neutral stochastic differential equation of the derivative. In addition, we exhibit two examples confirming the accuracy of the obtained results.
International journal of advanced smart convergence
/
제13권3호
/
pp.335-344
/
2024
This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.
본 연구에서는 폼 구조의 효율적인 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크를 개발하였다. Eshelby 텐서 기반의 평균장 균질화(Mean-field homogenization, MFH)는 타원체 형태의 공동을 포함하는 다공성 구조의 물성을 효율적으로 예측할 수 있지만, 셀룰러(cellular) 폼 구조의 물성은 정확하게 예측하기 어렵다. 한편, 유한요소 균질화(Finite element homogenization, FEH)는 정확성은 높지만 상대적으로 높은 해석 시간을 동반한다. 본 논문에서는 평균장 균질화와 유한요소 균질화의 장점을 결합한 데이터 기반 전이학습 프레임워크(Framework)를 제안하였다. 구체적으로, 대량의 평균장 균질화 데이터를 도출하여 사전학습 모델(Pre-trained model)을 구축하고, 상대적으로 소량의 유한요소 균질화 데이터를 이용하여 미세 조정(Fine-tuning) 하였다. 제안된 프레임워크를 검증하기 위한 수치 예제를 수행하였으며, 해석 정확도를 확인하였다. 본 연구의 결과는 다양한 폼 구조를 가진 재료의 해석에 적용할 수 있을 것으로 기대한다.
신뢰성있는 소프트웨어의 개발을 위해 테스트의 중요성은 매우 크다. 특히, 최근에 점진적이고 반복적인 소프트웨어 개발 방법론이 각광을 받으면서 소프트웨어의 잦은 변경에 따른 회귀 테스트의 중요성이 점점 커지고 있다. 이에 따라 단위 데스트의 자동화에 대한 연구가 활발히 진행되고 있다. JUnit은 자바 클래스의 단위 레벨 테스팅을 도와 주는 테스트 지원 프레임워크이다. 또한, JTestCase는 테스트 데이터와 테스트 코드를 분리함으로써, 데이터 중심 테스팅(data-driven testing)을 지원하기 위해 개발된 JUnit 확장 프레임워크이다. 본 논문에서는, 이 두 개의 테스트 프레임워크와 자바 리플렉션 API를 이용하여, 하나의 클래스 파일을 읽어 들여 XML 형태의 테스트 데이터 파일과 테스트 드라이버 코드를 자동생성하는 도구를 제안한다. 그리고, 구체적인 예를 통해 본 논문에서 제안하는 도구의 유용성을 보여준다. 본 논문의 데스트 도구는 회귀 단위 테스트에 필요한 노력을 줄여주고, 자바 클래스 단위 테스트를 지원하는 도구 개발의 기반 기술을 제공하며, 궁극적으로 소프트웨어 개발의 생산성을 향상시켜 준다.
The Journal of Asian Finance, Economics and Business
/
제7권5호
/
pp.291-304
/
2020
This paper examines the factors that drive temporal income diversification in rural areas of the Mekong River Delta in Vietnam, based on a framework that conceptualized diversification as a function of a household's capacity to diversify and incentives (both push and pull factors) to diversify. Drawing from five rounds of the Vietnam Living Standard Measurement Surveys covering a 13-year span (1993-2006), two panel datasets made from five cross-sectional samples are used for the analyses. The data are drawn from the Vietnam General Statistics Office. Both tobit model and Ordinary Least Squares model with random and fixed effects are applied. The main points emerging from the analysis is that income diversification is strongly influenced by household labor capacity. The relationship between household labor capacity and increasing insertion in non-farming wage activities is not driven by unobserved time-invariant factors such as household ability and motivation, but is instead driven by the higher labor capacity of households. In terms of the other household capacity variables, the effect of farm size is much larger in terms of retaining households in traditional occupations as compared to pushing them towards non-farm wage employment. Other variables such as household access to financial capital do not play an important role.
Journal of information and communication convergence engineering
/
제22권1호
/
pp.44-55
/
2024
High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.
2014년 철도운영자들과 철도시설관리자의 자발적인 안전관리를 정착시키기 위하여 철도안전법에서 '철도안전관리체계'를 강화하였다. 이에 따라 위험도를 평가하고 위험도를 관리하기 위한 안전대책을 수립하고 시행할 것으로 판단하였으나 현재 위험도 평가 체계는 개별 분야 내 단편적인 안전관리 수준으로 진행되고 있다. 또한 안전관리체계의 기술기준에서 철도 운영기관의 위험도 평가에 관한 내용이 의무사항으로 명시되어 있어 철도시설 및 철도차량유지보수의 위험도 평가를 위한 표준화된 기준이 필요하다. 따라서 본 논문에서는 최근 10년간 철도사고 데이터를 분석하여 먼저 철도 위험도 수준을 검증하였고, 철도차량유지보수 부분에서 데이터를 기반으로 개발된 상태기반 스마트 유지보수 시스템 사례를 통해 위험도를 효과적으로 평가하고 관리할 수 있는 표준화된 프레임워크를 제시하였다.
음향 도플러 유속계(Acoustic Doppler Current Profiler, ADCPs)는 하천의 유량측정에 널리 사용되고 있으나, 유량 측정성과의 불확도를 평가하는 방법에 대하여 진행된 연구는 부족한 현실이며, 이는 실제 하천에서 유속 및 유량 등의 수리량을 조절하는 것이 현실적으로 불가능하여 ADCP의 불확도 요인별 실험 및 분석이 어렵기 때문이다. 유량 및 수리량의 측정 불확도를 평가하기 위하여 과학 및 공학 분야에서는 다양한 연구들이 진행되어 왔으며, 그 중 국제적으로 공인받고 있는 방법 중 하나가 GUM (Guide to the Expression of Uncertainty Measurement)이다. 본 연구에서는 GUM 표준안을 기반으로 ADCP의 유량 측정 불확도를 평가하기 위한 연구를 수행하였다. ADCP의 유량 측정 불확도 요인별 분석을 수행하기 위하여 유량 공급의 조절이 가능한 실 규모 수로를 보유하고 있는 하천실험센터에서 실험을 진행하였으며, ADCP의 측정 정확도에 영향을 미치는 수심, 측정 지점에서 하안까지의 거리, ADCP의 잠김 깊이, 유속 오차, 측정 시간, 반복 횟수, 하상 조건 등에 대한 측정 정확도 평가 실험을 수행하였다. ADCP로 유량을 측정하는 방법은 지점측정방식을 기반으로 유속-면적법을 통해 산정하는 방법과 일반적으로 사용되는 이동측정방식이 있으며, 본 연구에서는 ADCP의 지점측정방식을 통해 유량을 산정하는 Section-by-Section 방법으로 산정된 유량의 불확도를 평가하였다. 모든 측정 결과는 요인별 불확도 평가를 수행하기 위하여 유속은 ADV, 수심은 광파기로 측정된 결과와 비교하였다.
국내 최초로 소프트웨어 글로벌화 품질관리(Globalization Quality Management, GQM) 프레임워크를 설계하고 실제 산업 현장에 적용하였다. GQM은 글로벌화 경험이 미약한 국내 소프트웨어 업체를 대상으로 글로벌화 기술 적용 결과를 국제 표준에 적합한 수준으로 끌어올리기위한 지원 및 점검을 위한 도구이다. 소프트웨어 개발 주기에 따른 체크포인트 기반의 품질관리 프로세스, 글로벌화 기술지원 모델 및 품질점검 모델로 구성된 GQM은 폭포수를 비롯한 계획주도방법론과 애자일을 포함한 반복점증방법론을 모두 지원한다. GQM에 기반하여 31개 소프트웨어 업체를 대상으로 글로벌화 수준진단을 수행하고 5점 척도로 평가한 결과, 글로벌화 역량이 2.47, 글로벌화 준비도가 2.55로 나타났다. 또한, 글로벌화 기술 도입을 위한 선결요건은 국제화 기술을 반영한 제품 설계(32.9%)와 글로벌 요구사항 분석(28%)으로 조사되었다.
International Journal of Computer Science & Network Security
/
제22권11호
/
pp.331-337
/
2022
Smart learning is augmented with digital, context-aware, and adaptable technologies to encourage students to learn better and faster. To ensure that digital learning is successful and that implementation is efficient, it is critical that the dimensions of digital learning are arranged correctly and that interactions between the various elements are merged in an efficient and optimal manner. This paper builds and discusses a basic framework for smart learning in the digital age, aimed to improve students' abilities and performance in learning. The proposed framework consists of five dimensions: Teacher, Technology, Learner, Digital content, and Evaluation. The Teacher and Learner dimensions operate on two levels: (a) an abstract level to fit in knowledge and skills or interpersonal characteristics and (b) a concrete level in the form of digital devices used by teachers and learners. Moreover, this paper proposes asynchronous online course delivery model. An Arabic smart learning platform has been developed, based on these smart learning core dimensions and the asynchronous online course delivery model, because despite the official status of this language in many countries, there is a lack of Arabic platforms to teach Arabic. Moreover, many non-native Arabic speakers around the world have expressed an interest in learning it. The Arabic digital platform consists of over 70 lessons classified into three competence levels: beginner, intermediate, and advanced, delivered by Arabic experts and Arabic linguists from various Arab countries. The five dimensions are described for the Arabic platform in this paper. Learner dimension is the Arabic and non-Arabic speakers, Teacher dimension is Arabic experts and Arabic linguistics, Technology dimension consists of technology for Arabic platform that includes web design, cloud computing, big data, etc. The digital contents dimension consists of web-based video, records, etc. The evaluation dimension consists of Teachers rating, comments, and surveys.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.