References
- Y. Jiang, C. Li, F. Takeda, E. A. Kramer, H. Ashrafi, and J. Hunter, "Attention-based LSTM networks for improved yield prediction in strawberries," Computers and Electronics in Agriculture, Vol. 205, 107233, 2023. DOI: 10.1016/j.compag.2022.107233
- X. Liu, K. Zhang, B. Zhang, S. Liang, and H. Tang, "Evaluating agricultural sustainability using the Analytic Hierarchy Process: A case study in the North China Plain," Journal of Cleaner Production, Vol. 375, 134177, 2023. DOI: 10.1016/j.jclepro.2022.134177
- J. Zhang, Y. Chen, M. Zhang, Q. Hu, and Y. Zhu, "A multi-modal deep learning framework for crop yield prediction integrating spectral, meteorological, and soil data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 62, No. 1, pp. 1-15, 2024. DOI: 10.1109/TGRS.2023.3325835
- L. Zhang, W. Jiao, H. Zhang, W. D. Batchelor, and D. Wang, "Optimizing irrigation management in water-scarce regions: An AHP-based decision support system," Agricultural Water Management, Vol. 272, 107820, 2024. DOI: 10.1016/j.agwat.2022.107820
- M. Belgiu and O. Csillik, "Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis," Remote Sensing of Environment, Vol. 204, pp. 509-523, 2018. DOI: 10.1016/j.rse.2017.10.005
- A. Chlingaryan, S. Sukkarieh, and B. Whelan, "Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review," Computers and Electronics in Agriculture, Vol. 151, pp. 61-69, 2018. DOI: 10.1016/j.compag.2018.05.012
- A. Kamilaris and F. X. Prenafeta-Boldu, "Deep learning in agriculture: A survey," Computers and Electronics in Agriculture, Vol. 147, pp. 70-90, 2018. DOI: 10.1016/j.compag.2018.02.016
- Y. Ma, B. Minasny, C. Wu, F. Liu, and J. Xu, "Prediction of soil organic carbon content in croplands using advanced machine learning models and remote sensing," Geoderma, Vol. 394, 115013, 2021. DOI: 10.1016/j.geoderma.2021.115013
- P. Nevavuori, N. Narra, and T. Lipping, "Crop yield prediction with deep convolutional neural networks," Computers and Electronics in Agriculture, Vol. 163, 104859, 2019. DOI: 10.1016/j.compag.2019.104859
- T. L. Saaty, "Decision making with the analytic hierarchy process," International Journal of Services Sciences, Vol. 1, No. 1, pp. 83-98, 2008. DOI: 10.1504/IJSSCI.2008.017590
- J. Sun, L. Di, Z. Sun, Y. Shen, and Z. Lai, "County-level soybean yield prediction using deep CNN-LSTM model," Sensors, Vol. 19, No. 20, 4363, 2019. DOI: 10.3390/s19204363
- T. van Klompenburg, A. Kassahun, and C. Catal, "Crop yield prediction using machine learning: A systematic literature review," Computers and Electronics in Agriculture, Vol. 177, 105709, 2020. DOI: 10.1016/j.compag.2020.105709
- A. X. Wang, C. Tran, N. Desai, D. Lobell, and S. Ermon, "Deep transfer learning for crop yield prediction with remote sensing data," in Proc. 1st ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 1-5, 2018. DOI: 10.1145/3209811.3212707
- Q. Yang, L. Shi, J. Han, Y. Zha, and P. Zhu, "Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images," Field Crops Research, Vol. 235, pp. 142-153, 2019. DOI: 10.1016/j.fcr.2019.02.022