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Abstract

High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including

supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions

are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a

groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based

solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning

model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over

sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision

(0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain

(NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model

achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing

state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

Index Terms: High utility itemset mining, Semantic sequential deep learning, MLP, Cosine similarity, Top-N HUI Recommendation

I. INTRODUCTION

In recent years, software computing, big data analytics,

and decentralized computing technologies have emerged.

These technologies, in sync with gigantic digital data, have

helped enterprises understand user behavior, consumer per-

ceptions, and preferences to improve business decisions.

Consumers’ purchase behavior and transaction analyses have

helped enterprises understand supply chain demands, high-

utility items, and periodic demand patterns, thereby playing

a decisive role in business communities, including e-com-

merce, manufacturing, and supply chain industries (e.g., the

global value chain). However, identifying a set of high-util-

ity items for the aforementioned digital data or transaction

details, remains challenging. Advanced computing technolo-

gies, such as pattern mining [1-4], have enabled the identifi-

cation of high-utility itemsets for business decisions. Typically,

in sync with the business ecosystem, pattern mining technol-

ogies exploit existing transaction details to understand con-

sumer preferences and socioeconomic behavior, thus helping

enterprises improve their marketing mix decisions. They also

help consumers identify the intended product or service that

meets the respective demands [5]. In other words, the pat-

tern-mining technique can help both enterprises and consum-

ers with certain optimistically identified sets of products or

items for corresponding use. In recent years, machine learn-
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ing (ML) and artificial intelligence (AI) have played decisive

roles in pattern mining-based recommendation systems [5].

An improved computing ecosystem called natural language

programming (NLP) can also identify the target output by

learning raw input patterns or transaction details [5]. These

techniques exploit different input patterns and associated

features to make prediction decisions [5], learning over dif-

ferent periodic and sequential patterns, as well as frequent

itemsets.

In business ecosystems, pattern analysis methods have

gained widespread attention for market basket analysis and

business intelligence (BI). BI approaches exploit sequential

or periodic transaction details (or data) to identify the fre-

quent itemsets with high utility values. This helps in per-

forming personalized predictions for users. In BI ecosystems,

the identification of high-utility itemsets (HUIs) enables the

segmentation of N demanding products and services. Classi-

cal approaches often exploit intercommodity associations

and frequency of item purchases or transactions, to identify

HUIs for further prediction [6-8]. Notably, an item is stated

to be a frequent itemset when its frequency is greater than a

predefined threshold, called the support value [9]. Different

approaches have been proposed for frequent high-utility

itemset mining (FHUIM); however, merely applying a pre-

defined threshold over large nonlinear features or patterns

cannot yield optimal accuracy for generalization. Techniques

such as the Apriori [6][7] method determine frequent item-

sets by assessing iterative level-based searches to identify

HUIs. Notably, these methods employ the downward closure

method, in which an a priori characteristic is applied to

prune redundant or less redundant items. Apriori-based

methods ensure that itemsets possessing a low support value

do not become an HUI. However, the iterative estimation of

the support value can be computationally demanding, espe-

cially over a large search space, which limits the robustness

of Apriori-based methods. In recent years, several other

approaches such as equivalence class clustering and bottom-

up lattice traversal (ECLAT) [2], frequent pattern-growth

(FP-Growth) [3][10], and hyper-structure mining (Hmine)

[11] were proposed to improve pruning and the associated

data structure for HUI identification. These approaches that

employ frequent itemset mining, only consider the frequency

of the itemsets in relation to other items rather than their

respective utility or co-occurrence probability. This limits

their utility in contemporary business decisions, where iden-

tifying co-occurrence items is as important as identifying

HUIs. The literature indicates that other details, such as

transaction counts, co-purchased items, their frequency, and

high profit value, can help identify HUIs in value-based

itemset predictions [12]. Unlike Apriori or frequency-based

solutions, high-utility itemset mining (HIUM) [13,14] tech-

niques which employ both volume as well as profit per unit

for HUI estimation, have gained widespread attention. These

methods aim to improve both accuracy and computational

costs to improve scalability [12]. Many state-of-the-art stud-

ies have applied the utility factor, which includes total and

unit profits of the itemset, in estimating HUIs from a large

search space based on transaction details. These approaches

perform better than Apriori methods; However, their suit-

ability for generalization to larger dynamic transactions is

disputable [12-15]. Studies have revealed that pruning insig-

nificant items from transaction search spaces can minimize

computational cost and delay and improve learning-based

prediction accuracy [12]. This prompted the development of

transaction-weighted utility (TWU) which focuses on

improving pruning, whereby the upper threshold is estimated

to prune an itemset. To improve accuracy and reduce the

complexity over large inputs, two-phase methods have been

proposed [16-19], which are hypothesized to be more effec-

tive than single-phase solutions [20,21]. In two-phase meth-

ods, highly correlated items are first identified. Subsequently,

their utility is assessed to label them as HUIs. Despite claims

of higher accuracy, the associated computational cost

remains a challenge, particularly in iterative database scan-

ning and level-wise utility estimation [20]. The use of a list

structure (utility list) performs better. However, the utility

value remains proportional to the length of the itemset, mak-

ing the computation more complex. To alleviate this, the

concept of average utility was recently proposed, which

focuses on reducing the impact of length on HUI prediction

[22-24], applying the average support value to perform HUI

estimation. Interestingly, none of these methods can exploit

the itemset probability or contextual details among the sequen-

tial or periodic transactions in performing HUI itemset pre-

diction.

In this paper, a novel convolutional sequential embedding

metric-driven cosine-similarity-based multi-layer perception

learning model is proposed for top-N high-utility itemset

recommendations. Unlike traditional deep learning solutions,

such as convolutional neural network (CNN)-based top-N

HUIM models that apply local features for prediction, the

proposed model exploits contextual or global features,

including semantic features, over sequential transactions to

perform top-N recommendations. First, semantic features are

extracted from the transaction details encompassing the

itemsets and their respective co-occurrence probabilities

using the semantic CNN (SCNN) model. The extracted

semantic features are processed by a multilayer perceptron

(MLP), which retrieves the linear relationship among the

itemsets and their corresponding co-occurrence probabilities.

Subsequently, the cosine-similarity method is applied over

the MLP-predicted linear associations to perform top-N HUI

predictions. In MATLAB-based simulations over different

datasets, the proposed HUIM model achieved a precision of

0.5632, mean absolute error (MAE) of 0.7610, hit rate

(HR)@K of 0.5720, and normalized discounted cumulative
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gain (NDCG)@K of 0.4268. Additionally, it exhibited an

average MAE of 0.608 on different datasets and latent

dimensions, achieving a cumulative performance accuracy

and precision of 97.94% and 97.04%, respectively. Relative

performance characterization revealed that the proposed top-

N HUIM model surpasses other state-of-art methods, includ-

ing CNN, in different federated learning environments,

which confirms the robustness of the proposed model and its

suitability for real-time enterprise purposes.

The remainder of this paper is organized as follows. Sec-

tion II discusses related works, followed by the research

questions in Section III. Section IV presents the overall pro-

posed model and its implementation. The simulation results

and relevant inferences are provided in Section V. Section VI

discusses the overall research contributions in the context of

future scope. The references used in this study are provided

at the end of the manuscript.

II. RELATED WORK

Pattern mining [4] methods were initially designed based

on the frequency of itemsets [4]. Frequent itemset mining

methods exploit threshold conditions such as support value

and profit score to perform HUI estimation. However, apply-

ing standalone threshold-based pruning alone cannot yield a

robust solution. A few improved methods such as ECLAT

[2], FP-Growth [3], Apriori [4], HMine [11], and HUIM

have been designed in recent years for HUI estimation. An

Apriori-based itemset mining method was proposed in [6],

where a level-wise search method is used to help estimate

frequent itemsets. However, the computational cost associ-

ated with a large search space and iterative pruning make

these methods laborious. The algorithm of FP-growth [3]

applies a tree-structure to detect HUIs, whereby an FP-tree

structure is first obtained by traversing across data space,

searching for frequent itemsets over the tree structure. An

improved FP growth method called HMine [11] has been

developed, with an additional supplementary pointer-based

hyperlink to represent items with a high frequency across the

search space. ECLAT [2] was designed by using a vertical

database structure called “Transaction ID list.” Unlike con-

ventional methods in which a unit pointer is applied to detect

each data element, the ECLAT method exploits the transac-

tion ID to minimize the scanning cost, applying a support

count value to each itemset to prune the search space for

HUI estimation. Other methods [6,26-29] have used the sup-

port value and/or mean profit score for HUI estimation.

Unlike frequency-based itemset mining methods, HUIM

methods have desirable performance [13,14] because of their

ability to exploit and learn over a large transaction volume,

and the corresponding profit makes them suitable for HUI

estimation. Two-phase HUI methods [16] begin by identify-

ing itemsets with higher frequencies, followed by an estima-

tion of their utility for final HUI prediction. However, these

methods have been criticized for their reliance on a stand-

alone threshold when dealing with non-linear sequential

data, which is often inadequate for HUI estimation [16].

Thus, the authors in [16] designed a transaction-weighted

utility (TWU) function to minimize the iterative data-scan-

ning cost. This TWU method was further enhanced in [17]

by introducing a flexible upper threshold and the capability

to skip high-utility itemsets, thereby improving the effi-

ciency of the search space. The authors employed a two-

phase method with pruning called the isolated itemset dis-

carding strategy (IIDS) to improve delay performance. Other

tree-based methods include incremental high-utility pattern

(IHUP) [18], HUP-tree [30], UP-Growth [19], UP-Growth+

[31], mining utility(MU)-Growth [32], and projection-based

(PB) indexing approach [33]; however, the computational

costs involved and lack of co-occurrence probability remain

unexplored. In [20], an HUI miner was proposed using a

utility-list (UL) data structure. The UL contains details of

the itemset required for pruning, followed by HUI identifica-

tion. However, despite claims of time efficiency, it cannot

address HUI identification using correlated itemsets. In [21],

HUI-Miner was designed to reduce the number of joins

between the utility and its efficiency functions. The authors

employed estimated-utility co-occurrence pruning (EUCP)

on a matrix structure called the estimated-utility co-occur-

rence structure (EUCS). The EUCP encompasses the TWU

values of the two item sets arranged in the EUCS matrix.

The estimated itemsets were used to prune low-significance

items without estimating the utility value. A number of prun-

ing algorithms have been developed to enhance HUIM [34];

however, they fail to address semantic relatedness among

itemsets over the search space. The authors in [35] designed

efficient itemset mining (EFIM) with predefined upper

bounds, considering subtree and local utility factors. To reduce

scanning costs, they used the transaction-merging concept.

The HMiner [36] model was applied using utility informa-

tion storage with allied pruning. Approaches such as BAHUI

[37], the HUIM-BPSO sign [38], MinHUIs [39], and FHM+

[40] have also been used for HUI estimation.

The two-phase average-utility (TPAU) method [22] applies

an average utility-based upper threshold condition, whereby

a level-wise search method is applied to enhance the time

efficiency. The projection-based average-utility (PBAU) [23]

method applies an indexing structure. By applying PBAU, a

hard upper limit is defined using the prefix concept [23] to

reduce search costs. In [41], a tree-based high-average-utility

itemset (HAUI) mining method was designed. The HAUI-

Growth model [42] was developed using a tree-based

method that efficiently reduces iterative data scanning, and

the HAUI miner was designed as a one-phase concept [43]

by applying an average utility-based list structure. The effi-
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cient high average-utility pattern mining (EHAUPM) in [44]

was designed by amalgamating two upper thresholds: looser

upper-bound utility (LUB) and revised tighter upper bound

(RTUB). Mining of high average-utility (MHAI) [45] retains

suitable HUIs based on a high average-utility itemset (HAI)

list structure. A closed high-utility itemset (CHUI) with

DGU, REG, RML, and DGM was designed in [51] to retain

decisive itemsets over the input data structure. In [52],

CHUI-Miner was designed as a single-phase model by

applying the EU-list structure. This reduces unexpected iter-

ative search costs. The CHIU-Miner, called EFIM-closed

[53], was developed with two strictly defined upper thresh-

olds with forward-backward examination. This method uses

local and subtree utility values to prune the search space.

The CLS-Miner [54] was designed with supplementary cov-

erage and LBP. Despite numerous efforts [46-50], no signifi-

cant work has examined the probability of coexisting items

as HUIs for top-N HUI predictions [55]. Van et al. [56] used

FP growth to examine the association between available fea-

tures to append new features with a certain threshold to per-

form HUI estimation. In [56], sequential-to-sequential learning

methods were applied to top-N target balanced recommenda-

tions. In [57], a deep learning method was applied to top-N

recommendations, considering the user’s interest level and

frequency. A deep reinforcement learning model was used in

[58] for top-N recommendations. Similarly, interest-related

item set learning and similarity measures were applied to

perform top-N recommendations [59]. In [60], a trust-aware

sequential recommendation model that exploits frequency

information was designed. Unfortunately, there has been no

viable effort that considers sequential co-occurrence proba-

bility or the semantically connected co-occurrence feature to

perform top-N HUI recommendations. This was the key

driving force in this research.

III. SYSTEM MODEL

This section discusses the proposed convolutional sequen-

tial embedding-driven cosine similarity-based MLP learning

model for top-N HUI recommendations. As the name indi-

cates, the proposed system comprises three key components:

a semantic sequential convolutional encoding (SSCE) also

called semantic CNN (SCNN), MLP, and cosine similarity

for top-N HUI predictions. The SSCE model comprises a

multidirectional filtering-assisted semantic embedding frame-

work that learns over sequential input items or transactions

to generate a semantic embedding matrix. In sync with the

enterprise application environment, transaction details (user

preferences) and allied frequent itemset patterns (buying pat-

terns) are considered. In this manner, unlike conventional

deep learning approaches [64-67] that apply local item-wise

embedding metrics for learning, the proposed model employs

both item-level and corresponding group-level (co-occur-

rence probability) information to perform top-N HUI predic-

tion or recommendation. This approach enables the model to

achieve a higher accuracy while maintaining low computa-

tional cost and delays during the scanning of search space

(or feature space) to support estimation. An MLP network is

applied in conjunction with an adaptive model optimizer

(ADAM) learning model to perform training and obtain lin-

ear associations among the items, item frequency, and associ-

ated co-occurrence probabilities over the sequential transaction

inputs. To refine the predicted results and increase accuracy,

MLP was deployed in conjunction with the cosine similarity

method, to help predict (accurately) the top-N HUIs for rec-

ommendation. The proposed model encompasses the follow-

ing phases:

1. Semantic sequential convolutional encoding (SSCE),

2. Multilayer perceptron (MLP) learning

3. Cosine similarity-driven top-N HUI prediction.

The detailed discussion of these (functional) components

is provided as follows:

A. Semantic Sequential Convolutional Encoding 
(SSCE)

Let the transaction data U have L consecutive itemsets.

The objective of this work is to identify the top-T items with

both high frequency and co-occurrence probability over

sequential transaction data Su. Here, the transaction dataset

has input items S1
u, ..., S|Su |

u. Therefore, the proposed SSCE

model first converts input transactions into an equivalent

semantic word-embedding form. More specifically, the

Word2Vec embedding method is applied to convert sequen-

tial input transactions into equivalent word-embedded met-

rics (PM). This metric states the probability of occurrence of

each itemset in the transaction data. Once semantic (word-

embedded) metrics, also called semantic features, are

obtained for the input transaction data, multidirectional con-

volutional filtering (MDCF) is applied to retrieve the contex-

tual features over the itemsets along with the corresponding

co-occurrence probability. Subsequently, the retrieved con-

textual details are used to perform learning using the MLP

network, which, in conjunction with cosine similarity, pre-

dicts the top-N HUIs. A schematic of the implementation of

the proposed model is shown in Fig. 1.

By applying the aforementioned Word2Vec semantic

word-embedding method over the input sequential itemsets

and their occurrences across the transaction data, an embed-

ding matrix that possesses embedded information related to

the itemsets and their occurrence probability is obtained.

Here, the embedding matrix for the input sequential transac-

tions is obtained from the semantic feature space by input-

ting L-traversed itemsets into a neural network. Let, i denote

an item; then the corresponding embedding matrix represent-
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ing the latent feature is obtained as , where d is the

latent dimension. In this manner, Word2Vec embedding

transforms input sequential transactions containing L item-

sets and stacks them to yield an embedding matrix

 for u transactions at time t. The embedding

metrics thus obtained are defined as:

(1)

In addition to the above derived itemset embedding, the

proposed model applies a supplementary embedding model

to derive latent information for u users, , where Pu is

the user specific embedding matrix in latent feature space.

This is achieved using multidirectional convolutional filter-

ing (MDCF). In CNN-based feature extraction models, con-

volutional filters retrieve local features over Word2Vec

embedding metrics to learn and predict. In our proposed

method, the deployed CNN model retrieves the itemset

sequential pattern and corresponding co-occurrence probabil-

ity in L × d dimensions for L items. In this manner, the latent

embedding metrics L × d or E enable convolution filters to

perform frequent sequential pattern estimations for learning.

In this study, we applied two distinct CONV filters, a hori-

zontal and vertical filter, to learn sequential patterns over the

input embedding metric E. A horizontal filter was applied to

generate two group-level sequential itemset patterns signify-

ing the co-occurrence probability. Horizontal filters were

used in the form of h × d matrices, where h is the height

(h = 2), and d is the width. The horizontal filters choose the

itemsets by sliding over the rows of the embedded metrics or

latent space E. In contrast, the vertical filter (L × 1 matrix)

selects sequential frequent itemsets by sliding over the col-

umns of E.

Let ,  be the horizontal convolutional

filter with  as the filter height. In four-dimen-

sional latent space L = 4, a total number of n = 8 filters were

deployed. The horizontal filter Fk slides down from top to

the bottom of E and continues over all horizontal dimensions

of E for item i, . In this manner, the interac-

tion outputs the ith convolution value obtained using (2).

(2)

where  refers to the inner product or multiplication func-

tion, whereas represents the activation function. 

yields the inner product between Fk and the submatrix

obtained from the th row to the (i − h + 1)-th raw of E (i.e.,

). Hence, the final convolutional result for Fk is a

vector (3).

(3)

We applied a max-pooling layer to the extracted embed-

ding metrics or vector ck (3). This helps retain the high-reso-

lution features with maximum values, retrieved over the

features generated by the convolutional filter. Thus, the pro-

posed method retrieves the set of vectors or significant fea-

tures over the deployed n filters that eventually yield the

output as  (4).

(4)

Similar to horizontal filter-driven feature extraction (4),

we also applied vertical convolutional filters. Let,  be the

total number of vertical filters, then , where

. Here, each vertical filter  correlates the columns

of E by traversing from left to right, d-times, obtaining out-

put  in (5).

(5)

The retrieved feature vector (5) shows that the result is the

same as the weighted sum over L rows of the embedding

metrics E, obtained by examining the weights . Mathe-

matically,

(6)

In (6), El represents the lth row of E. Thus, the vertical fil-

ters help in learning the embeddings of the L subsequent

itemsets having the same value as the weighted sum, in iden-
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Fig. 1. Proposed top-N HUI prediction model
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tifying the latent information of L itemsets. Vertical filters

generate an entity-level sequential itemset pattern by using

weighted sums over the latent information of the traversed

itemsets.

Traditional deep learning-based recommendation models

use a single weighted sum to predict an itemset. By contrast,

we used  global vertical filters to estimate  weighted

sums  to further search and improve the learning for

better prediction results. Mathematically,

(7)

Horizontal and vertical filters were used to extract the

global features from the global average max-pooling layer,

thereby applying the max function to estimate the global fea-

tures (8).

(8)

The proposed model generates a final feature vector by

applying a nonlinear-activation-driven fully connected layer.

The output of the fully connected layer is given by (9).

(9)

In (9), Wh and Wh represent the weight metrices, whereas

 and  are the bias components. The feature representa-

tion  (9) was used as the latent feature for further

learning and HUI prediction. To learn the extracted latent

features or semantic search space, an MLP network was

applied. A brief description of the deployed MLP network

follows.

B. Multi-Layer Perceptron (MLP) Layer

As stated earlier, the features from both the horizontal and

vertical filters (9) were projected onto a fully connected neu-

ral network. The MLP network was applied as a fully convo-

lutional neural network (FCNN) to represent the nonlinear

relationship between the itemsets and the associated cooc-

currence probability. The deployed MLP network is a multi-

layer feed-forward neural network (MFNN) that learns

nonlinear itemsets, aligning them with co-occurrence proba-

bility interactions. In this study, the combined embedding

feature (9) was fed into the MLP to obtain the latent embed-

ding feature in (10).

(10)

In (10),  and  denote the weight and

bias vectors, respectively. Lm represents the total number of

MLP layers, and f(*) represents the rectified linear unit

(ReLU) activation function.  states the latent fea-

ture metrics learned by the MLP network. The latent (seman-

tic) embedding metrics for the itemsets were obtained using

(11).

(11)

In (11),  and  state the weights and

bias vectors for the deployed MLP network, respectively.

Here,  states the item latent embedding metrics.

The MLP training model over latent metrics was designed

based on the loss between the predicted and measured item-

set relationships. In this work, the cost function (12) was

used to train the network for the prediction of target itemsets

q using cost function p (12).

(12)

In (12),  represents the loss function between the

observed itemsets and the associated co-occurrence probabil-

ity y and predicted interaction . In (12), Yp+ and Yp− refer

to the measured and predicted itemsets, respectively. In (12),

 denotes the regularizer, whereas λ is the hyper-

parameter controlling the level of significance of the regular-

izer. To alleviate overfitting of Y+, a fixed number of unob-

served itemsets was selected as the negative instance, given

by .  to replace Y−. This helped achieve

swift and accurate learning of the input features. Thus, using

sequential itemsets, associated co-occurrence probability yij
were obtained (13).

(13)

In this study, a normalized cross-entropy loss function (14)

was applied to perform the learning.

(14)

In (14), max(R) denotes the highest rating of the itemsets

across the input latent embedding matrix. We applied MLP

to represent a nonlinear relationship between the itemsets

and their co-occurrence (utility). In the MLP network, let the

input embedding matrices for the itemsets be ,

where  represents the combined embedding matrix per-

ñ ñ
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taining to the common itemsets with a high co-occurrence

probability p. The embedding matrix of the distinct metrics

is Upd. For item vj, the corresponding embedding matrices in

the output layer of the MLP are retrieved according to (15-

16).

(15)

(16)

In (15-16) the rectified linear unit (ReLU) is represented

by the activation function f (*), whereas  and …,

and , … are the weights of the multilayer networks

in the different layers for  and , respectively.

Finally, in the output layer, the predicted top-N HUI itemsets

 between itemsets ui and vj are obtained using the cosine

similarity function (17).

(17)

Notably, unlike traditional top-N prediction models, where

the learning model (e.g. MLP) predicts the top N selected

items, the proposed model applies cosine similarity to the

initially predicted items. This helps identify the optimal set

of top-N items with high inter-item similarity and corre-

sponding co-occurrence probability. This can be of great sig-

nificance to enterprises, for highly accurate HUI prediction

and inventory management. Thus, by applying this method,

the proposed model performs top-N HUI predictions for

enterprises or applications.

IV. RESULTS AND DISCUSSION

This study proposes a robust convolutional sequential

embedding metric-driven cosine similarity-assisted multi-

layer perception learning model for top-N high-utility item-

set recommendation. Unlike classical approaches, the pro-

posed model exploits both sequential itemset frequency and

co-occurrence probability information to perform top-N HUI

predictions. First, the sequential transaction data are input

into word embedding using the Word2Vec method. Subse-

quently, the retrieved semantic embedding matrix and multi-

directional filters encompassing the horizontal and vertical

filters are used to derive global features. The composite

embedded matrix features are projected as input onto the

MLP layer, which, in conjunction with cosine similarity, per-

forms top-N HUI prediction and recommendations. The deep

learning model was executed at an initial learning rate of

0.0001. The overall proposed model was developed using the

MATLAB software tool, performing simulation over central

processing units arranged using 8 GB RAM and a 3.2 GHz

processor. To assess efficacy, different benchmark datasets

were applied [61,62]. The dataset encompasses sequential

transaction details and itemsets. The proposed model enables

intensity estimation over sequential itemsets, as expressed in

(18).

Frequent Sequential Intensity Per Itemset (FSII)

=

In (18), the numerator represents the frequency ( , ...,

, )  of the itemsets. In this study, itemset fre-

quency and associated significance were measured using a

minimum threshold based on support value and confidence

(here, 50%) using an L-order Markov chain. In (18), the

denominator represents the number of transactions. Thus, by

applying (18), the intensity of the sequential itemset pattern

is estimated for each input dataset. Data elements or itemsets

with an FSII (Frequent Serach Itemsets) smaller than 0.0025

were removed before performing Word2Vec embedding. The

input data were divided into two subsets: training and test-

ing, with 70% set aside for the training data and 30% for the

test data. Parameters such as Precision@, Recall@N, maxi-

mum average precision (MAP), and MAE were used to

examine performance. The derivation of the aforementioned

performance parameters are provided in (19-21). The aver-

age performances for the different datasets (average d = 25)

are shown in Fig. 2.

Precision = (19)

Recall = (20)

AP = (21)

In the above equations, N denotes the list of N predicted

(search) itemsets (i.e., ), whereas R signifies the test

dataset. In (19), Precision@N denotes the precision of N pre-

dicted itemsets. To assess the relative performance over dif-

ferent embedding dimensions, we performed simulations

using different d values 4, 8, 16, 32, and 64). The results are

summarized in Table 1.

Among the state-of-the-art approaches considered for top-

N itemset recommendation, a few methods [57-60] have

applied deep learning methods for latent feature learning and

prediction; however, state-of-the-art methods can be labori-

ous and time consuming. For instance, the authors in [57]

applied a CNN followed by a denoising autoencoder (DAE)

to perform top-N recommendation, with the CNN applied for

latent feature extraction, followed by fractional maximiza-

tion and DAE-based top-N recommendation. The use of suc-

cessive deep models can incur high computational costs,
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exhaust memory, and delay performance. In addition, in

observing the empirical simulation results over different

datasets, the proposed approach showed a relatively lower

error value than \existing methods [57]. The highest preci-

sion obtained by DMLR-DAE [57] was 0.32. By contrast,

the proposed method achieved the highest precision of

0.5632, which is higher than that of the other existing meth-

ods. The MAE obtained using the DMLR-DAE [57] was

0.611 at d = 10 and 0.609 at d = 30. In contrast, the proposed

method achieved an average MAE of 0.7610 for the different

benchmark datasets.

In addition, the hit rate was estimated for the number of

target HUI predicted in the top N predicted lists. Mathemati-

cally, HR is measured using (22).

(22)

In (22), |T | denotes the number of itemsets and associated

co-occurrence probabilities or interactions in the test set. In

addition, the normalized discounted cumulative gain was

applied to assess the hit position by assigning higher scores

to hits (especially fort the top K ranks). Mathematically,

NDCG@K is obtained as described previously (23).

(23)

In (23), ri denotes the ranked relevance of the target item

at the i-th position (hence, ri = 1). Otherwise, ri = 0. In addi-

tion, the root mean square error (RMSE) was measured

using (24), where T states the total number of test ratings,

whereas Rs(i, j) represents the real rating, with the measured

or predicted rating being Rs(i, j).

RMSE = (24)

The proposed model was simulated using embedding

dimensions of k = {4, 8, 16, 32, 64}, where k represents the

latent embedding dimension. The results (Table 2) infer that

with increasing k, HR also increases. This implies that with

increasing latent dimensions, both HR and NDCG increase.
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Fig. 2. Average performance over different datasets

Table 1. Simulated results over different datasets

Dataset d Prec. Recall MAP MAE

Tmall

4 0.341 0.014 0.126 0.983

8 0.420 0.024 0.174 0.734

16 0.451 0.042 0.204 0.832

32 0.563 0.059 0.234 0.721

64 0.498 0.059 0.293 0.701

Gowalla

4 0.174 0.039 0.199 0.863

8 0.192 0.059 0.201 0.723

16 0.198 0.098 0.223 0.758

32 0.210 1.235 0.224 0.634

64 0.218 1.249 0.300 0.698

Repeat_Buyer

4 0.356 0.032 0.167 0.899

8 0.380 0.052 0.198 0.983

16 0.404 0.159 0.201 0.799

32 0.428 0.210 0.223 0.652

64 0.439 0.245 0.247 0.678

Kaggle

4 0.319 0.087 0.199 0.857

8 0.334 0.042 0.199 0.699

16 0.3452 0.073 0.259 0.694

32 0.3569 0.099 0.299 0.621

64 0.3452 0.139 0.301 0.6873

Table 2. Performance over the different latent embedding dimensions

Latent

Dimensions (d)
Data HR@K NDCG@K RMSE

4

Tmall 0.453 0.283 1.409

Gowalla 0.682 0.410 1.389

Repeat Buyer 0.543 0.312 1.004

Kaggle 0.459 0.321 0.953

8

Tmall 0.486 0.299 1.091

Gowalla 0.672 0.461 1.077

Repeat Buyer 0.578 0.532 0.997

Kaggle 0.613 0.523 0.096

16

Tmall 0.482 0.299 0.987

Gowalla 0.677 0.498 0.988

Repeat Buyer 0.578 0.487 0.902

Kaggle 0.689 0.512 0.904

32

Tmall 0.501 0.374 0.938

Gowalla 0.698 0.460 0.874

Repeat Buyer 0.582 0.490 0.921

Kaggle 0.600 0.498 0.184

64

Tmall 0.512 0.377 0.880

Gowalla 0.701 0.481 0.871

Repeat Buyer 0.564 0.499 0.911

Kaggle 0.510 0.412 0.910
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The mean HR ratio was 0.57923. In contrast, average NDCG

was 0.4268 and RMSE was 0.9143. A higher HT rate indi-

cates a higher accuracy and reliability of the solution, whereas,

a lower RMSE indicates a better performance of the pro-

posed model. In comparison with state-of-the-art methods

[63], the results confirm the superiority of the proposed

model for top-N HUI recommendations. The existing method

[63] achieved an HR@64 of 0.5126; in contrast, the average

HR@K of 0.5720, of the proposed method was significantly

higher than that of the state-of-the-art methods. This con-

firms the robustness of the proposed model for top-N real-

time HUI predictions.

Additionally, we compared the proposed model in terms of

top-N recommendation accuracy. Table III presents the com-

parative results of different state-of-the-art techniques. The

information in the confusion matrix was used to assess pre-

diction accuracy.

Observing the results, clearly unlike traditional deep learn-

ing-based approaches [64-67], where feature extraction is

based on CNN, in the proposed method, semantic feature

extraction is followed by improved learning-driven feature

extraction, which is subsequently processed using cosine-

similarity to obtain top-N HUI prediction. Using this

approach, the proposed model refined the predicted (top-N

HUI) output, achieving higher accuracy, which can easily be

visualized in Fig. 4.

Similarly, in terms of cumulative precision, which is

derivedfrom the confusion matrix, the proposed itemset top-

N HUI prediction model yielded higher precision (97.04%)

than the existing method [68] (87%), clearly indicating that

the proposed model is more robust compared to the state-of-

the art models for enterprise HUI prediction. Conclusions

alongwith inferences are presented in the following section.

V. CONCLUSION

Most existing HUIM methods often face limitations due to

high computational costs, delays, and reduced accuracy

when processing extensive sequential transaction data preva-

lent across various industries. Moreover, the pruning costs

and lack of contextual details representing co-occurrence

probability limit the efficacy of available state-of-the-art

methods. Unlike HUIMs that rely on support value and unit

price threshold for pruning, deep learning-based HUI identi-

fication is a better alternative. This approach, however,

necessitates the exploitation of contextual details, including

semantic sequential embedding features, to perform HUI

prediction. Motivated by this, this study proposed a novel

and robust convolutional sequential semantic embedding-

driven multi-layer perceptron learning environment, in sync

with cosine similarity, to predict top-N HUI recommenda-

tions. In the proposed method, first, two filters are applied

along the horizontal and vertical directions simultaneously in

convolutional sequential deep learning, to extract the seman-

tic embedding matrix over the transaction details. The use of

multiple convolutional filters allows for the retention of a

substantial amount of semantic information for further learn-

ing and classification. Using the extracted semantic features,

the MLP neurocomputing model, which is designed using a

ReLU regulation layer and ADAM non-linear optimization

function, obtains the linear relationship among the itemsets

available across the search space. The proposed MLP model

was executed in conjunction with a cosine similarity func-

tion to predict the top-N HUI for further recommendations.

The use of a semantic embedding matrix with MLP learning

and cosine similarity measures helped refine the top-N HUI

itemset predictions, which can be highly accurate for any

Table 3. Accuracy Prediction

Source Techniques Accuracy (%)

[64] Federated NN, CNN 71.68

[65] CNN 70.00

[66] Random Forest, CNN and XGBoost 88.84

[67] NN, Logistic Regression 89.00

[68]
Association rule as feature selection over 

CNN for top-N itemset prediction
91.00

Proposed

convolutional sequential semantic embed-

ding driven MLP with Cosine similarity-

based top-N HUI recommendation

97.94

Fig. 3. Average performance over the different datasets
Fig. 4. Top-N HUI prediction accuracy
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enterprise solution(s). The proposed model exhibited the

highest precision of 0.5632, MAE of 0.7610, HR@K of

0.5720, and NDCG@K of 0.4268. Additionally, it exhibited

an average MAE of 0.608 over four different datasets, indi-

cating robustness for real-time HUI predictions. The higher

cumulative accuracy (97.94%) and precision (97.04%) con-

firm the efficacy and suitability of the proposed model for

real-time enterprise solutions.

REFERENCES

[ 1 ] P. Fournier-Viger, J. C. W Lin, R. U. Kiran, Y. S. Koh, and R.

Thomas, “A survey of sequential pattern mining,” Data Science and

Pattern Recognition, vol. 1, no. 1, pp. 54-77, Feb. 2017.

[ 2 ] M. J. Zaki, “Scalable algorithms for association mining,” IEEE

Transactions on Knowledge and Data Engineering,, vol. 12, no. 3,

pp. 372-390, 2000. DOI: 10.1109/69.846291.

[ 3 ] J. Han, J. Pei, and M. Kamber, “Data mining: concepts and

techniques,” Elsevier, Amsterda, 2011. 

[ 4 ] R. Agrawal and R. Srikant, “Mining sequential patterns,” In

Proceedings of the Eleventh International Conference on Data

Engineering, Taipei, Taiwan, pp 3-14, 1995. DOI: 10.1109/

ICDE.1995.380415.

[ 5 ] K. K. Sethi and D. Ramesh, “A fast high average-utility itemset

mining with efficient tighter upper bounds and novel list structure,”

The Journal of Supercomputing, Springer, vol. 76, no. 12, pp. 10288-

10318, Mar. 2020. DOI: 10.1007/s11227-020-03247-5.. 

[ 6 ] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules

between sets of items in large databases,” in Proceedings of the 1993

ACM SIGMOD International Conference on Management of Data,

Washington, USA, pp 207-216, 1993. DOI: 10.1145/170035.170072.

[ 7 ] R. Agrawal and R. Srikant; “Fast algorithms for mining association

rules,” in Proceedings of the 20th International Conference on Very

Large Data Bases, pp 487-499, 1994.

[ 8 ] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B.

Le, “A survey of itemset mining,” WIREs Data Mining and Knowledge

Discovery, vol. 7, no. 4, Apr. 2017. DOI: 10.1002/widm.1207.

[ 9 ] T. Wei, B. Wang, Y. Zhang, K. Hu, Y. Yao, and H. Liu, “FCHUIM:

Efficient Frequent and Closed High-Utility Itemsets Mining,” IEEE

Access, vol. 8, pp. 109928-109939, 2020. DOI: 10.1109/ACCESS.

2020.3001975.

[10] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining

using fp-trees,” IEEE Transactions on Knowledge and Data Engineering,

vol. 17, no. 10, pp. 1347-1362, Oct. 2005. DOI: 10.1109/TKDE.

2005.166.

[11] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-mine:

hyper-structure mining of frequent patterns in large databases,” in

ICDM 2001, Proceedings IEEE International Conference on Data

Mining, San Jose, USA, pp. 441-448, 2001. pp 441-448, DOI:

10.1109/ICDM.2001.989550..

[12] V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE Transactions on Knowledge and Data Engineering,

vol. 25, no. 8, pp. 1772-1786, Aug. 2013. DOI: 10.1109/TKDE.

2012.59.

[13] R. Chan, Q. Yang, Y. D. Shen, “Mining high utility itemsets,” in

IEEE International Conference on Data Mining, Melbourne, Florida,

pp 19-26, 2003, DOI: 10.1109/ICDM.2003.1250893. 

[14] H. Yao, H. J. Hamilton, C. J. Butz; “A foundational approach to

mining itemset utilities from databases,” in Proceedings of the 2004

SIAM International Conference on Data Mining. Society for

Industrial and Applied Mathematics, Lake Buena Vista, USA, pp

482-486 2004. DOI: 10.1137/1.9781611972740.51.

[15] W. Song, Y. Liu, and J. Li, “BAHUI: Fast and memory efficient

mining of high utility itemsets based on bitmap,” International.

Journal of. Data Warehousing Mining, vol. 10, no. 1, pp. 1-15, Jan.

2014. DOI: 10.4018/ijdwm.2014010101.

[16] Y. Liu, W. K. Liao, and A. N. Choudhary, “A two-phase algorithm

for fast discovery of high utility itemsets,” in Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD),

Hanoi, Vietnam, pp. 689-695, 2005. DOI: 10.1007/11430919_79. 

[17] Y. C. Li, J. S. Yeh, and C. C. Chang, “Isolated items discarding

strategy for discovering high utility itemsets,” Data Knowledge

Engineering, vol. 64, no. 1, pp.198-217, Jan. 2008. DOI: 10.1016/

j.datak.2007.06.009.

[18] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee, “Efficient

tree structures for high utility pattern mining in incremental

databases,” IEEE Transactions on Knowledge and Data Engineering,

vol. 21, no. 12, pp. 1708-1721, Dec. 2009. DOI: 10.1109/TKDE.

2009.46.

[19] V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu, “UP-growth: an

efficient algorithm for high utility itemset mining,” in Proceedings of

the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Washington DC, USA, pp 253-262,

2010. DOI: 10.1145/1835804.1835839

[20] M. Liu and J. Qu, “Mining high utility itemsets without candidate

generation,” in Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, Maui,

USA, pp 55-64, 2012. DOI: 10.1145/2396761.2396773.

[21] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM: faster

high-utility itemset mining using estimated utility co-occurrence

pruning,” in Foundations of Intelligent Systems: 21st International

Symposium, ISMIS 2014,, Roskilde, Denmark, pp 83-92, 2014. DOI:

10.1007/978-3-319-08326-1_9.

[22] T. P. Hong, C. H. Lee, and S. L. Wang, “Effective utility mining with

the measure of average utility,” Expert Systems Applications, vol. 38,

no. 7, pp. 8259-8265, 2011. DOI: 10.1016/j.eswa.2011.01.006.

[23] G. C. Lan, T. P. Hong, and V. S. Tseng, “A projection-based

approach for discovering high average utility itemsets,” Journal of

Information Science and Engineering, vol. 28, no. 1, pp. 193-209,

2012.

[24] C. W. Lin, T. P. Hong, and W. H. Lu ,“Efficiently mining high

average utility itemsets with a tree structure,” in Asian Conference on

Intelligent Information and Database Systems, Hue City, Vietnam,,

pp 131-139, 2010. DOI: 10.1007/978-3-642-12145-6_14. 

[25] A. Y. Peng, Y. S. Koh, and P. Riddle, “mHUIMiner: A fast high

utility itemset mining algorithm for sparse datasets,” in Advances in

Knowledge Discovery and Data Mining, Jeju, Korea, pp. 196-207,

2017. DOI: 10.1007/978-3-319-57529-2_16.

[26] J. Pei, J. Han, and L. V. Lakshmanan, “Pushing convertible

constraints in frequent itemset mining,” Data Mining and Knowledge

Discovery, vol. 8, no. 3, pp. 227-252, May 2004. DOI: 10.1023/

B:DAMI.0000023674.74932.4c.

[27] K. K. Sethi and D. Ramesh, “HFIM: a Spark-based hybrid frequent

itemset mining algorithm for big data processing,” The Journal of

Supercomputing, vol. 73, no. 8, pp. 3652-3668, Jan. 2017. DOI:

10.1007/s11227-017-1963-4. 

[28] G. Pyun, U. Yun, and K. H. Ryu, “Efficient frequent pattern mining

based on linear prefix tree,” Knowledge-Based Systems, vol. 55, pp.

125-139, Jan. 2014. DOI: 10.1016/j.knosys.2013.10.013.

[29] U. Yun, G. Lee, and K. H. Ryu, “Mining maximal frequent patterns



J. lnf. Commun. Converg. Eng. 22(1): 44-55, Mar. 2024 

https://doi.org/10.56977/jicce.2024.22.1.44 54

by considering weight conditions over data stream,” Knowledge.

Based Systems vol. 55, pp. 49-65, Jan. 2014. DOI: 10.1016/j.knosys.

2013.10.011. 

[30] C. W. Lin, T. P. Hong, and W. H. Lu, “An effective tree structure for

mining high utility itemsets,” Expert Systems with Applications, vol.

38, no. 6, pp. 7419-7424, Jun. 2011. DOI: 10.1016/j.eswa.2010.12.082.

[31] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE Trans Knowl Data Engineering, vol. 25, no. 8, pp.

1772-1786, Aug. 2013. DOI: 10.1109/TKDE.2012.59.

[32] U. Yun, H. Ryang, and K. H. Ryu, “High utility itemset mining with

techniques for reducing overestimated utilities and pruning

candidates,” Expert Systems with Applications, vol. 41, no. 8, pp.

3861-3878, 2014. DOI: 10.1016/j.eswa.2013.11.038

[33] G. C Lan, T. P. Hong, and V. S Tseng, “An efficient projection-based

indexing approach for mining high utility itemsets,” Knowledge

Information Systems, vol. 38, no. 1, pp. 85-107, Aug. 2013. DOI:

10.1007/s10115-012-0492-y.

[34] S. Krishnamoorthy “Pruning strategies for mining high utility

itemsets,” Expert Systems with Applications, vol 42, no. 5, pp. 2371-

2381, Apr. 2015. DOI: 10.1016/j.eswa.2014.11.001.

[35] S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wu, and V. S. Tseng,

“EFIM: a highly efficient algorithm for high-utility itemset mining,”

in 14th Mexican International Conference on Artificial Intelligence,

Cuernavaca, Mexico, pp 530-546, 2015. DOI: 10.1007/978-3-319-

27060-9_44.

[36] S. Krishnamoorthy, “HMiner: efficiently mining high utility

itemsets,” Expert Systems with Applications, vol. 90, pp. 168-183,

Dec. 2017. DOI: 10.1016/j.eswa.2017.08.028.

[37] W. Song, Y. Liu, J. Li, “BAHUI: fast and memory efficient mining

of high utility itemsets based on bitmap,”. International Journal

Data Warehouse Mining (IJDWM), vol. 10, no. 1, pp. 1-15, Jan.

2014. DOI: 10.4018/ijdwm.2014010101. 

[38] J. C. W. Lin, L. YangL, P. Fournier-Viger, J. M. T. Wu, T. P.. Hong,

L. S. L. Wang, and J. Zhan, “Mining high utility itemsets based on

particle swarm optimization,” Engineering Applications Artificial

Intellegence, vol. 55, pp. 320-330, Oct. 2016. DOI: 10.1016/

j.engappai.2016.07.006.

[39] P. Fournier-Viger, J. C. W. Lin, C. W.. Wu, V. S. Tseng, and U.

Faghihi “Mining minimal high-utility itemsets,” in International

Conference on Database and Expert Systems Applications, Porto,

Portugal, pp 88-101, 2016. DOI: 10.1007/978-3-319-44403-1_6.

[40] P. Fournier-Viger, J. C. W. Lin, Q. H. Duong, and T. L. Dam “FHM

+: faster high-utility itemset mining using length upper-bound

reduction,” in International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, Morioka,

Japan,pp 115-127, 2016. DOI: 10.1007/978-3-319-42007-3_11. 

[41] T. Lu, B. Vo, H. T. Nguyen, and T. P. Hong, “A new method for

mining high average utility itemsets,” in 13th IFIP TC 8

International Conference, Computer Information Systems and

Industrial Management 2014, Ho Chi Minh City, Vietnam,, pp 33-

42, 2014. DOI: 10.1007/978-3-662-45237-0_5.

[42] C. W. Lin, T. P. Hong, W. H. Lu, “Efficiently mining high average

utility itemsets with a tree structure”, in Asian Conference on

Intelligent Information and Database Systems, Hue City, Vietnam,,

pp 131-139, 2010. DOI: 10.1007/978-3-642-12145-6_14.

[43] J. C. W. Lin, T. Li, P. Fournier-Viger, T. P. Hong, J. Zhan, and M.

Voznak, “An efficient algorithm to mine high average-utility

itemsets,” Advanced Engineering Information, vol. 30, no. 2, pp.

233-243, Apr. 2016.DOI : 10.1016/j.aei.2016.04.002.

[44] J. C. W. Lin, S. Ren, P. Fournier-Viger, and T. P. Hong, “EHAUPM:

efficient high average-utility pattern mining with tighter upper

bounds,” IEEE Access, vol. 5, pp. 12927–12940, 2017. DOI:

10.1109/ACCESS.2017.2717438.

[45] U. Yun and D. Kim “Mining of high average-utility itemsets using

novel list structure and pruning strategy,” Future Generation

Computer Systems, vol. 68, pp. 346-360, Mar. 2017. DOI: 10.1016/

j.future.2016.10.027.

[46] J. C. W. Lin, S. Ren, P. Fournier-Viger, T. P. Hong, J. H Su, and B.

Vo, “A fast algorithm for mining high average-utility itemsets,”

Application Intellegence Systems, vol. 47, no. 2, pp. 331-346, Mar.

2017. DOI: 10.1007/s10489-017-0896-1.

[47] J. C. W. Lin, S. Ren, and P. Fournier-Viger, “MEMU: more efficient

algorithm to mine high average utility patterns with multiple

minimum average-utility thresholds,” IEEE Access, vol. 6, pp. 7593-

7609, 2018. DOI: 10.1109/ACCESS.2018.2801261.

[48] J. M. T. Wu, J. C. W. Lin, M. Pirouz, and P. Fournier-Viger, “TUB-

HAUPM: tighter upper bound for mining high average-utility

patterns,” IEEE Access, vol. 6, pp. 18655-18669, 2018. DOI:

10.1109/ACCESS.2018.2820740. 

[49] T. Truong, H. Duong, B. Le, and P. Fournier-Viger, “Efficient

vertical mining of high average-utility itemsets based on novel

upper-bounds,” IEEE Transactions on Knowledge and Data

Engineering, 2018, vol. 31, no. 2, pp. 301-314, Feb. 2019. DOI:

10.1109/TKDE.2018.2833478. 

[50] T. Truong, H. Duong, B. Le, P. Fournier-Viger, and U. Yun,

“Efficient high average-utility itemset mining using novel vertical

weak upper-bounds,” Knowledge-Based Systems, vol. 183, pp.

104847, Nov. 2019. DOI: 10.1016/j.knosys.2019.07.018. 

[51] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient

algorithms for mining the concise and lossless representation of high

utility itemsets,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 3, pp. 726-739, Mar. 2015. DOI: 10.1109/

TKDE.2014.2345377.

[52] C.-W. Wu, P. Fournier-Viger, J.-Y. Gu, and V. S. Tseng, “Mining

closed+ high utility itemsets without candidate generation,” in 2015

Conference on Technologies and Applications of Artificial Intelligence

(TAAI), Tainan, Taiwan, pp. 187-194, 2015. DOI: 1109/

TAAI.2015.7407089.

[53] P. Fournier-Viger, S. Zida, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng,

“EFIM-closed: Fast and memory efficient discovery of closed high-

utility itemsets,” in 12th International Conference, Machine

Learning and Data Mining in Pattern Recognition, New York, USA,

pp. 199-213, 2016. DOI: 10.1007/978-3-319-41920-6_15.

[54] T.-L. Dam, K. Li, P. Fournier-Viger, and Q.-H. Duong, “CLS-Miner:

Efficient and effective closed high-utility itemset mining,” Frontiers

Computer. Science., vol. 13, no. 2, pp. 357-381, Apr. 2019, DOI:

10.1007/s11704-016-6245-4.

[55] L. T. Hong Van, P. Van Huong, L. D. Thuan, and N. Hieu Minh,

“Improving the feature set in IoT intrusion detection problem based

on FP-growth algorithm,” in International Conference on Advanced

Technologies for Communications (ATC), Nha Trang, Vietnam, pp.

18-23, 2020. DOI: 10.1109/ATC50776.2020.9255431.

[56] M. I. M. Ishag, K. H. Park, J. Y. Lee, and K. H. Ryu, “A pattern-

based academic reviewer recommendation combining author-paper

and diversity metrics,” IEEE Access, vol. 7, pp. 16460-16475, 2019.

DOI: 10.1109/ACCESS.2019.2894680.

[57] X. Wang, Y. Sheng, H. Deng and Z. Zhao, “Top-N-targets-balanced

recommendation based on attentional sequence-to-sequence learning,”

IEEE Access, vol. 7, pp. 120262-120272, 2019. DOI: 10.1109/

ACCESS.2019.2937557.

[58] W. Zhou, J. Li, M. Zhang, Y. Wang, and F. Shah, “Deep learning

modeling for top-N recommendation with interests exploring,” IEEE

Access, vol. 6, pp. 51440-51455, 2018. DOI: 10.1109/ACCESS.



Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

55 http://jicce.org

2018.2869924.

[59] V. Baghi, S. M. Seyed Motehayeri, A. Moeini, and R. Abedian,

“Improving ranking function and diversification in interactive

recommendation systems based on deep reinforcement learning,”

26th International Computer Conference, Computer Society of Iran

(CSICC), Tehran, Iran, pp. 1-7, 2021. DOI: 10.1109/CSICC52343.

2021.9420615.

[60] J. Lv, B. Song, J. Guo, X. Du, and M. Guizani, “Interest-related item

similarity model based on multimodal data for top-N recommendation,”

IEEE Access, vol. 7, pp. 12809-12821, 2019. DOI: 10.1109/

ACCESS.2019.2893355.

[61] Y. Zeng, Z. Qu, and B. Zhou, “Trust-aware sequence

recommendation based on attention mechanism, in IEEE 5th

international conference on cloud computing and big data analytics,

Chengdu, China, pp. 45-50, 2020. DOI: 10.1109/ICCCBDA49378.

2020.9095580. 

[62] IJCAI. Repeat Buyers Prediction Competition [Online], Available:

https://ijcai-15.org/repeat-buyers-prediction-competition/.

[63] Kaggle. Association Rules Mining/Market Basket Analysis [Online],

Available: https://www.kaggle.com/datatheque/association-rules-

mining-market-basket-analysis.

[64] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix

factorization models for recommender systems,” in Proceedings of

26th International Joint Conference on Artificial Intelligence (IJCAI-

17), pp. 3203-3209, 2017.

[65] V. Umayaparvathi and K. Iyakutti, “Automated feature selection and

churn prediction using deep learning models,” International

Research Journal of Engineering and Technology (IRJET), vol. 4,

no. 3, pp. 1846-1854, Mar. 2017.

[66] P. Ghadekar and A. Dombe, “Image- Based Product

Recommendations Using Market Basket Analysis,” in 2019 5th

International Conference On Computing, Communication, Control

And Automation (ICCUBEA), Pune, India, pp. 1-5, 2019. DOI:

10.1109/ICCUBEA47591.2019.9128524.

[67] O. F. Seymen, O. Dogan, and A. Hiziroglu, “Customer churn

prediction using deep learning,” in Proceedings of the 12th

International Conference on Soft computing and Pattern Recognition

(SoCPaR 2020), Online, pp. 520-529, 2021. DOI: 10.1109/

ICCUBEA47591.2019.9128524.

[68] N. Pazhaniraja, S. Sountharrajan, E. Suganya, and M. Karthiga, “Top

‘N’ Variant Random Forest Model for High Utility Itemsets

Recommendation,” EAI Endorsed Transactions on Energy Web, |

vol. 8, no. 35, pp. 1-7, Jan. 2021. DOI: 10.4108/eai.25-1-2021.

168225.

Siva S
He received his Master of Computer Applications (M.C. A) from the University of Madras, India, in 2004. With over

16 years of experience in software research and development, he is currently employed as a senior engineering

manager in a company in Bangalore, India, where a healthcare mobile solution is being developed using IoT and AI.

Additionally, he is pursuing his Ph.D. at REVA University, Bangalore, India, and holds membership in IEEE.

Dr. Shilpa Chaudhari
Currently, she is working as an Associate Professor at the Department of CSE, MSRIT, Bangalore. She has been a

technology educator and corporate trainer since 1999. Over the last 18 years, she has held various academic

positions in technical institutes in Maharashtra and Karnataka. Her areas of research and teaching include network

security, RTOS, computational intelligence, wireless networks, and embedded system development. She is an active

professional member of the Computer Society of India (CSI), having been a Life member since 2013, and also holds

membership with IEEE Member (#94611631), Bangalore Section.


