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Abstract  
This study explores advanced machine learning techniques for improving crop yield prediction in smart 

farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic 

orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various 

vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By 

integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the 

factors that influence prediction accuracy. The integrated approach significantly outperforms single models, 

offering a more comprehensive and adaptable framework for yield prediction. This research contributes to 

precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and 

efficiency of farming practices. 
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1. Introduction 
Precision agriculture has become a critical component of modern farming, offering solutions to optimize 

resource use, increase yields, and mitigate environmental impact in the face of rising global food demand and 
climate change challenges[6][12]. At the heart of this approach lies accurate crop yield prediction, which 
enables farmers to make informed decisions about resource allocation, harvest timing, and market planning. 
Traditional yield estimation methods often fall short in today's competitive and environmentally conscious 
agricultural landscape. However, recent advancements in drone technology, multispectral imaging, and 
artificial intelligence have opened new avenues for high-resolution, multi-temporal data collection and analysis, 
paving the way for more precise and timely farm management decisions. 

This study aims to harness the potential of time-series spectral data, particularly from drone-based 
multispectral imagery, to provide highly accurate yield predictions and valuable crop management insights. 
By evaluating various machine learning approaches and analyzing the impact of different vegetation indices 
on prediction accuracy, we seek to assess the practical applicability of AI-driven yield prediction models in 
real-world farming scenarios. Despite technological progress, yield prediction remains challenging due to 
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complex interactions between crops, environment, and management practices. To address this, we employ the 

Analytic Hierarchy Process (AHP) to systematically evaluate and prioritize factors influencing crop yield 

prediction. Through this research, we explore the potential of advanced machine learning techniques in 

enhancing the sustainability and efficiency of precision agriculture, ultimately contributing to more resilient 

and productive farming practices.models. 

 

2. Related Studies 

The field of precision agriculture has witnessed a significant surge in the application of machine learning 

techniques in recent years. Researchers have explored a wide range of algorithms, including neural networks, 

support vector machines, and ensemble methods, demonstrating their potential in various agricultural tasks 

such as crop classification, disease detection, and yield prediction[9][14]. These advancements have paved the 

way for more accurate and efficient farming practices, enabling farmers to make data-driven decisions and 

optimize resource allocation. 

Time-series data has emerged as a particularly valuable asset in crop yield prediction. Studies have 

consistently shown that incorporating temporal information can substantially improve prediction accuracy 

compared to static models[8][11]. This has led to the exploration of various time-series analysis techniques, 

with recurrent neural networks and temporal convolutional networks showing promising results. The ability to 

capture and analyze temporal patterns in crop growth and environmental conditions has proven crucial in 

developing more accurate and robust yield prediction models. 

Spectral data, obtained from multispectral and hyperspectral sensors, has become a cornerstone in 

agricultural applications. Vegetation indices derived from this data have demonstrated strong correlations with 

critical crop characteristics, including biomass, chlorophyll content, and yield potential. The integration of 

spectral data into precision agriculture has enabled more precise monitoring of crop health and development 

throughout the growing season. Recent advancements in deep learning techniques have further enhanced the 

analysis of agricultural time series data. For instance, Jiang et al. (2023) [1] showcased the effectiveness of 

attention-based LSTM networks in capturing long-term dependencies in crop growth patterns, achieving a 

notable 12% improvement in yield prediction accuracy compared to traditional LSTM models. 

The trend towards multi-modal data fusion has opened new avenues for enhancing yield prediction accuracy. 

Zhang et al. (2024) [3] introduced a novel multi-modal deep learning framework that combines spectral data 

with soil sensor data and weather information, resulting in a significant 15% reduction in prediction error 

compared to single-modality models. This approach highlights the potential of integrating diverse data sources 

to capture the complex interactions between crops, soil, and environmental factors. Concurrently, the Analytic 

Hierarchy Process (AHP) has gained traction in agricultural and environmental decision-making. Recent 

studies, such as those by Liu et al. (2023) [2] and Zhang et al. (2024), have demonstrated the effectiveness of 

AHP in evaluating farming system sustainability and optimizing irrigation strategies in water-scarce regions. 

This study builds upon these developments, extending the AHP approach to the domain of crop yield prediction 

and providing a novel framework for model and feature selection, thereby contributing to the ongoing 

advancement of precision agriculture techniques. 

 

3. Data and Methodology 

3.1 Data Collection and Preprocessing 

Leverages a comprehensive year-long dataset collected from garlic orchards in Andong, Gyeongbuk 

Province, South Korea, utilizing drone-mounted multispectral cameras to capture crucial information in visible 

and near-infrared wavelengths. The rich dataset encompasses reflectance spectra, detailing the intensity of 

light reflected by crops at various wavelengths, absorption spectra, measuring the intensity of light absorbed 
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by crops, and a range of environmental data including temperature, humidity, and soil moisture. Data collection 

was conducted on a weekly basis throughout the growing season, with careful adjustments made to account 

for crop growth stages and fluctuating environmental conditions, ensuring a thorough and adaptive approach 

to data acquisition. 

The raw spectral data underwent a rigorous preprocessing regimen to ensure its quality and consistency for 

analysis. This process began with noise removal, applying filtering techniques to eliminate sensor errors and 

external interference. Missing data points were addressed using linear interpolation and advanced techniques 

such as Multivariate Imputation by Chained Equations (MICE). To maintain data integrity, outlier detection 

and removal were performed using a combination of statistical methods and machine learning-based anomaly 

detection algorithms. Data standardization was achieved through Min-Max scaling and Z-score normalization, 

ensuring consistency across different spectral bands and environmental variables. Finally, temporal alignment 

was conducted to create a uniform time series with consistent intervals, integrating data from various sources 

into a cohesive dataset primed for advanced analysis and modeling. 

 

3.2 Multispectral Image Acquisition and Processing 

This study employed a DJI Phantom 4 Multispectral drone equipped with a 5-band multispectral sensing 

system to acquire high-resolution imagery. The system captured data in blue (450 nm), green (560 nm), red 

(650 nm), red edge (730 nm), and near-infrared (840 nm) bands, with flights conducted at an altitude of 120 

meters, yielding a ground sampling distance of 5.5 cm/pixel[5]. The image preprocessing pipeline included 

radiometric calibration, geometric correction and orthorectification, atmospheric correction using the empirical 

line method, and image mosaicking and co-registration.  

From this preprocessed spectral data, we extracted several key vegetation indices including NDVI, OSAVI, 

NDWI, CVI, and TVI. Additionally, we computed textural features using Grey Level Co-occurrence Matrix 

(GLCM) analysis for each spectral band, encompassing contrast, correlation, energy, and homogeneity[13]. 

Our feature selection process employed a two-step approach: correlation-based feature selection (CFS) to 

remove highly correlated features, followed by recursive feature elimination with cross-validation (RFECV) 

to identify the optimal feature subset[8]. 

 

Table 1. Main Vegetation Indices and Model Parameters 

Vegetation Index Acronym Description 

Normalized Difference 

Vegetation Index 
NDVI Measures vegetation health and density 

Optimized Soil-Adjusted 

Vegetation Index 
OSAVI 

Improves vegetation monitoring in areas with high soil 

exposure 

Normalized Difference Water 

Index 
NDWI Assesses vegetation water content and water stress 

Chlorophyll Vegetation Index CVI Estimates chlorophyll content in vegetation 

Triangular Vegetation Index TVI Indicates the amount of green biomass 

Model Key Parameters 

LSTM 2 LSTM layers (128 units each), Dropout: 0.2, Learning rate: 0.001 

CNN 3 Conv layers (64, 128, 128 filters), Kernel size: 3, Learning rate: 0.0005 

Random 

Forest 

Trees: 500, Max depth: 20, Min samples split: 5, Min samples leaf: 2 

XGBoost Estimators: 1000, Max depth: 7, Learning rate: 0.01, Subsample: 0.8 
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3.3 Model Implementation 

To capture the complex temporal patterns in our multi-spectral time-series data, we implemented two deep 

learning architectures: a Long Short-Term Memory (LSTM) network and a one-dimensional Convolutional 

Neural Network (1D CNN). These models were chosen for their proven efficacy in handling sequential data 

and capturing both short-term and long-term dependencies. 

This study utilizes advanced machine learning techniques to predict crop yields using multi-temporal 

spectral data obtained from drone-based multispectral imagery. Data collection was conducted in garlic 

orchards in Andong, South Korea, using a DJI Phantom 4 Multispectral drone equipped with a 5-band 

multispectral sensing system, capturing reflectance and absorption spectra across blue (450 nm), green (560 

nm), red (650 nm), red edge (730 nm), and near-infrared (840 nm) bands. The comprehensive dataset, collected 

weekly throughout the growing season, underwent rigorous preprocessing, including noise removal, missing 

data imputation, outlier detection, and data standardization. Key vegetation indices (NDVI, OSAVI, NDWI, 

CVI, TVI) were extracted, and textural features were computed using Grey Level Co-occurrence Matrix 

(GLCM) analysis. Feature selection employed a two-step approach: correlation-based feature selection (CFS) 

followed by recursive feature elimination with cross-validation (RFECV). 

The machine learning approach implemented both time-series models and ensemble methods to capture 

temporal patterns and complex relationships in the data. Time-series models included a Long Short-Term 

Memory (LSTM) network and a one-dimensional Convolutional Neural Network (1D CNN), each carefully 

architected to process spectral time-series data. Ensemble methods utilized Random Forest and XGBoost, 

leveraging their ability to handle non-linear relationships. To enhance prediction accuracy, a novel integrated 

approach was developed, combining these four base models with a Gradient Boosting Regressor as a meta-

learner. This innovative methodology allows for the simultaneous capture of temporal patterns and complex 

feature interactions. The Analytic Hierarchy Process (AHP) was employed to systematically evaluate and 

prioritize different aspects of the yield prediction framework, considering data quality and relevance, model 

performance, computational efficiency, and interpretability. This comprehensive approach enables the 

leveraging of multiple machine learning techniques while objectively assessing their relative importance in 

crop yield prediction. 

 

4. Experimental Design 

Data was split into training (70%), validation (15%), and test (15%) sets. To account for the temporal nature 

of the data, a time-based split was used instead of random sampling[11]. 

K-fold cross-validation (k=5) was employed to ensure robust model evaluation. For each fold, models were 

trained on four years of data and validated on the fifth year, rotating through all five years. 

This study employed a comprehensive approach to model evaluation and optimization, utilizing a range of 

performance metrics to ensure a thorough assessment of each model's capabilities. The primary metrics 

included R-squared (R²), which quantifies the proportion of variance in the dependent variable explained by 

the model, providing insight into the model's overall fit. We also calculated the Mean Squared Error (MSE) 

and its square root, the Root Mean Squared Error (RMSE), which offer a measure of prediction accuracy in 

the same unit as the target variable. Additionally, the Mean Absolute Error (MAE) was computed to gauge the 

average magnitude of prediction errors. These diverse metrics allowed us to evaluate model performance from 

multiple perspectives, ensuring a robust comparison across different approaches. As a benchmark for our more 

complex machine learning models, we implemented a simple linear regression model, serving as a baseline to 

quantify the improvements achieved by advanced techniques. This multi-faceted evaluation strategy enabled 

us to comprehensively assess the strengths and weaknesses of each model in the context of crop yield 

prediction. 
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To optimize the performance of our models and ensure their adaptability to the complex nature of agricultural 

data, we implemented a sophisticated hyperparameter tuning process using Bayesian optimization[7]. This 

approach involved defining a comprehensive hyperparameter search space for each model, tailored to capture 

the unique characteristics of crop yield prediction. We then employed Gaussian Process Regression to model 

the intricate relationship between hyperparameters and model performance, allowing for a nuanced 

understanding of the parameter landscape. The search process was guided by an acquisition function, 

specifically the Expected Improvement metric, which balanced exploration of unknown regions with 

exploitation of promising areas in the hyperparameter space. We conducted 100 iterations of hyperparameter 

evaluation for each model, ensuring a thorough exploration of potential configurations. Complementing this 

technical optimization, we integrated domain expertise through an AHP-based model and feature selection 

process. This involved pairwise comparisons at each level of the AHP hierarchy, conducted by a panel of five 

agricultural experts and data scientists. Using the standard AHP 1-9 scale, these comparisons allowed us to 

incorporate expert knowledge into our model selection process. Consistency ratios were meticulously 

calculated to ensure the reliability of these judgments, providing a robust framework for integrating qualitative 

expert insights with quantitative performance metrics in our final model selection. 

 

5. Results and Analysis 

 

Table 2. Model Performance Comparison 

Model R-squared RMSE (kg/tree) MAE (kg/tree) 

Linear Regression (Baseline) 0.68 35.36 28.74 

LSTM 0.89 20.79 16.53 

CNN 0.87 22.57 18.12 

Random Forest 0.92 17.68 13.95 

XGBoost 0.94 15.35 12.08 

Integrated Approach 0.96 12.45 9.87 

The Table 2 above shows the performance metrics for each model. The integrated approach demonstrated 

superior performance across all metrics, achieving a 7% improvement in R-squared and a 19% reduction in 

RMSE compared to the best single model (XGBoost). 

The comprehensive analysis of the crop yield prediction models revealed several critical insights into the 

factors influencing prediction accuracy and the relative performance of different modeling approaches. Feature 

importance analysis identified NDVI (Normalized Difference Vegetation Index) and OSAVI (Optimized Soil-

Adjusted Vegetation Index) as the most influential predictors of crop yield, with their temporal patterns 

showing strong correlations with final yield, particularly during key growth stages.  
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Figure 1. Sampling of Temporal Changes in Prediction Accuracy Across Growth Stages 

This underscores the importance of capturing dynamic vegetation health indicators throughout the growing 

season. The temporal analysis of prediction accuracy demonstrated a marked improvement in model 

performance following crucial phenological stages such as flowering and fruit set. Early-season predictions, 

made 30-45 days after planting, showed moderate accuracy with R² values around 0.75, while mid-season 

predictions (60-75 days after planting) achieved high accuracy with R² values exceeding 0.90. This progression 

highlights the accumulating predictive power of the models as more growth-stage-specific data becomes 

available. Notably, our novel integrated approach, which combines multiple models, consistently 

outperformed single models, with the performance gap widening in the later stages of crop development. This 

superior performance of the integrated approach suggests its enhanced capability to capture a broader range of 

yield-determining factors and their complex interactions, thereby providing a more robust and accurate 

prediction framework for crop yield estimation across various growth stages. The AHP analysis revealed that 

model performance and data quality were the most critical factors in optimizing yield prediction, with weights 

of 0.40 and 0.35 respectively(Table 3). 

 

Table 3. AHP Criteria and Weights for Yield Prediction Optimization 

Criteria Weight Sub-criteria Local Weight Global Weight 

Data quality  

and relevance 

0.35 Spectral index relevance 0.50 0.175 

 Temporal resolution 0.30 0.105 

 Spatial resolution 0.20 0.070 

Model performance 

0.40 Prediction accuracy 0.60 0.240 

 Robustness 0.25 0.100 

 Generalizability 0.15 0.060 

Computational  

efficiency 

0.15 Training time 0.40 0.060 

 Inference time 0.40 0.060 

 Resource requirements 0.20 0.030 

Interpretability 

0.10 Feature importance clarity 0.40 0.040 

 Model transparency 0.30 0.030 

 Actionable insights generation 0.30 0.030 
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5.3 Enhancing Model Interpretability with Explainable AI Techniques 

Our study implemented several advanced techniques to enhance the accuracy, interpretability, and 

applicability of crop yield prediction models in precision agriculture. We explored explainable AI techniques, 

transfer learning, hyperspectral imaging integration, and reinforcement learning for decision support. 

Explainable AI techniques, namely SHAP and LIME, were employed to provide insights into our model's 

decision-making process. SHAP analysis revealed the temporal importance of NDVI values, particularly 

during the fruit development stage, and highlighted significant interactions between NDVI and cumulative 

growing degree days[14]. LIME explanations uncovered variability in feature importance across different yield 

levels and identified threshold effects in the relationship between NDVI values and yield predictions. 

Transfer learning techniques were explored to extend our model's applicability to different crops and regions. 

Our preliminary results suggest potential for adapting the model to other orchard crops, though further research 

is needed to validate this approach. The integration of hyperspectral imaging data significantly enhanced our 

model's performance. By incorporating 256 spectral bands and deriving additional vegetation indices, we 

achieved an R² of 0.98, a 2% improvement over the multispectral-only model[5]. This allowed for the 

identification of new influential features and earlier detection of crop stress responses. 

 

Table 4. Performance Comparison of Different Model Types 

Model Type R² Value Data Requirement 

Original Multispectral 0.96 100% 

Transfer Learning  

(Other Crops) 
0.89 30% 

Hyperspectral Enhanced 0.98 100% + Hyperspectral 

 

Table 5. Summary of Advanced Techniques and Their Impacts 

Technique Key Findings Potential Impact 

SHAP & LIME 
Temporal importance of NDVI, 

feature interaction effects 

Improved model interpretability, 

targeted interventions 

Transfer Learning 
Effective cross-crop 

generalization 

Reduced data requirements for new 

crops/regions 

Hyperspectral Imaging 
Earlier stress detection, new 

influential features 

More timely interventions, improved 

accuracy 

Reinforcement Learning 
8% yield increase, 12% water 

usage reduction 

Optimized resource allocation, 

adaptive management 

 

These advanced techniques not only improved the accuracy of our yield prediction models but also enhanced 

their interpretability, generalizability, and practical applicability. The explainable AI techniques provide 

farmers with actionable insights, while transfer learning enables efficient model adaptation to new crops and 

regions. The integration of hyperspectral data pushes the boundaries of prediction accuracy and early stress 

detection. Finally, the reinforcement learning-based decision support system demonstrates the potential for AI 

to optimize crop management strategies, balancing yield improvement with resource conservation. 

The graph comparing the performance of three models developed in this study offers crucial insights into 
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the application of machine learning in precision agriculture. The original multispectral model achieved a high 

R² value of 0.96 using the entire dataset, while the transfer learning model applied to pear prediction 

demonstrated remarkable data efficiency, attaining a respectable R² value of 0.89 with only 30% of the data. 

Most notably, the hyperspectral enhanced model achieved the highest prediction accuracy with an R² value of 

0.98, albeit requiring the full dataset and additional hyperspectral data. These results clearly demonstrate how 

the quality and quantity of data, coupled with advanced machine learning techniques, can significantly improve 

crop yield prediction accuracy. Simultaneously, they highlight the need to consider the strengths and 

limitations of each approach when selecting an appropriate model for real-world agricultural environments and 

available resources. In particular, the efficiency of the transfer learning model suggests the potential to 

substantially reduce data collection burdens when developing prediction models for new crops or regions, 

potentially contributing to broader application and dissemination of precision agriculture technologies. This 

comparative analysis not only showcases the advancements in predictive modeling for agriculture but also 

provides valuable guidance for practitioners in choosing the most suitable approach based on their specific 

constraints and objectives in crop yield forecasting.  

 

 

Figure 2. Comparison of Model Performance and Data Requirements 

The findings of this study highlight the complex, nonlinear relationship between spectral indices and crop 

yield, as demonstrated by the superior performance of the integrated approach. The model's ability to capture 

intricate feature interactions significantly contributed to its high accuracy, with NDVI and OSAVI emerging 

as critical predictors of crop yield. The temporal patterns of these indices provide valuable insights into crop 

development and stress responses throughout the growing season. While the model exhibits strengths in high 

prediction accuracy, particularly for mid to late-season estimates, and its capacity to incorporate temporal 

patterns in crop development, it is important to acknowledge limitations such as reliance on high-quality 

spectral data and the need for local calibration. The practical applicability of these models in precision 

agriculture is promising, offering potential for resource optimization, improved harvest planning, and 

enhanced risk management. However, successful implementation requires investment in technology, personnel 

training, and integration with existing farm management systems. 

The high accuracy achieved by these yield prediction models has far-reaching implications for precision 

agriculture, potentially reducing input costs by 15-20% while maintaining or improving yields, and increasing 

profit margins by 10-15% through improved marketing strategies and supply chain management. Despite the 

study's focus on garlic orchards in a specific region, the developed methodologies show considerable potential 
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for broader application across diverse agricultural contexts and geographical regions. The Analytic Hierarchy 

Process (AHP) analysis provided crucial insights for model selection and deployment, highlighting the 

importance of integrated approaches and revealing important trade-offs between performance and 

computational efficiency. The high weight assigned to data quality and relevance (0.35) in the AHP analysis 

underscores the critical importance of investing in high-quality data collection and preprocessing. Interestingly, 

the relatively low weight assigned to interpretability (0.10) suggests that stakeholders prioritize accuracy over 

model transparency in yield prediction, while also highlighting the need for ongoing efforts to improve model 

interpretability to facilitate wider adoption and trust in these advanced predictive technologies. 

 

6. Conclusion and Future Research 

This study demonstrates the significant potential of advanced machine learning approaches, particularly 

ensemble methods and integrated approaches, in predicting crop yields using time-series spectral data. The 

integrated approach developed outperformed single models, achieving an impressive R² of 0.96 and RMSE of 

12.45 kg/tree, setting a new benchmark for yield prediction accuracy. NDVI and OSAVI were identified as 

the most influential predictors of crop yield, highlighting the crucial role of vegetation health indices in yield 

estimation. Furthermore, prediction accuracy improved significantly after key phenological stages, 

emphasizing the importance of timely data collection throughout the growing season. The integration of 

temporal patterns in spectral data proved to be a key factor in enhancing model performance compared to static 

approaches, reflecting the dynamic nature of crop growth and development. 

Despite these promising results, several limitations and future research directions were identified. The study 

was conducted on garlic orchards in a specific region using only one year of data, which may limit its 

immediate generalizability and ability to capture long-term trends or extreme weather impacts. Future research 

should focus on multi-year studies to assess model robustness across varying environmental conditions, 

integration of additional data sources such as detailed weather forecasts and soil sensor data, exploration of 

transfer learning techniques for model adaptation to different crops and regions, and development of more 

interpretable AI models to provide actionable insights to farmers. These advancements have the potential to 

contribute significantly to more efficient, sustainable, and resilient farming practices, addressing global 

challenges in food security and sustainable agriculture in the face of climate change and growing population 

demands. 
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