Acknowledgement
The authors acknowledge and deeply appreciate the careful reading and useful suggestions of the anonymous reviewers, which has improved the quality of this paper.
References
- M. Abouagwa and J. Li, G-Neutral Stochastic Differential Equations With Variable Delay And non-Lipschitz Coefficients, Discrete Contin. Dyn. Syst. Ser. B. 25 (2020), 1583-1606. https://doi.org/10.3934/dcdsb.2019241
- O. Aryasova and A.Pilipenko, On differentiability with respect to the initial data of the solution to an SDE with a Levy noise and discontinuous coefficients, Stochastics. 86 (2014), 643-654. https://doi.org/10.1080/17442508.2013.865133
- R. Bougherra, H. Boutabia, and M.Belksier, Differentiability of Stochastic Differential Equation Driven by d-dimensional G-Brownian Motion with Respect to the Initial Data, Bull. Iranian Math. Soc. 47 (2021), 231-255. https://doi.org/10.1007/s41980-020-00490-7
- L. Denis, M. Hu, and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal. 34 (2011), 139-161. https://doi.org/10.1007/s11118-010-9185-x
- F. Faizullah, A. A. Memom, M. A. Rana, and M. Hanif, The p-moment exponential estimates for neutral stochastic functional differential equations in the G-framework, J. Comput. Anal. Appl. 26 (2019), 81-90.
- F. Faizullah, M. Bux, M. Rana, and G. ur Rahman, Existence and stability of solution to non-linear neutral stochastic functional differential equations in the framework of G-Brownian motion, Adv. Differ. Equ. 2017 (2017), Article Number 350 (2017).
- F. Hartung, Differentiability of solutions with respect to parameters in neutral differential equations with state-dependent delays, J. Math. Anal. Appl. 324 (2006), 504-524. https://doi.org/10.1016/j.jmaa.2005.12.025
- F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, Functional differential equations with state-dependent delay: theory and applications, in Handbook of Differential Equations: Ordinary Differential Equations, Vol. 3, 435-545, edited by A. Canada, P. Drabek and A. Fonda, Elsevier, North-Holand, 2006.
- M. Hu and S. Peng, On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), 539-546. https://doi.org/10.1007/s10255-008-8831-1
- Y. Izumi, Higher order differentiability of solutions to backward stochastic differential equations, Stochastics 90 (2017), 102-150. https://doi.org/10.1080/17442508.2017.1315119
- Q. Lin, Differentiability of stochastic differential equations driven by the G-Brownian motion, Sci. China Math. 56 (2013), 1087-1107. https://doi.org/10.1007/s11425-012-4534-4
- S. Peng, G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito Type . In: Benth, F.E., Di Nunno, G., Lindstrom, T., Oksendal, B., Zhang, T. (eds) Stochastic Analysis and Applications. Abel Symposia, Vol. 2, 541-567, Springer, Berlin, Heidelberg, 2007.
- S. Peng, G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty, preprint (2007); arXiv:0711.2834.
- S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl. 118 (2008), 2223-2253. https://doi.org/10.1016/j.spa.2007.10.015
- S. Peng, Nonlinear Expectation and Stochastic Calculus under Uncertainty, Springer, Berlin, 2019.
- A. Slavik, Generalized differential equations: Differentiability of solutions with respect to initial conditions and parameters, J. Math. Anal. Appl. 402 (2013), 261-274. https://doi.org/10.1016/j.jmaa.2013.01.027
- D. Zhang and Z. Chen, Exponential stability for stochastic differential equation driven by G-Brownian motion, Appl. Math. Lett. 25 (2012), 1906-1910. https://doi.org/10.1016/j.aml.2012.02.063