DOI QR코드

DOI QR Code

DIFFERENTIABILITY OF NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH RESPECT TO THE INITIAL DATA

  • Zakaria Boumezbeur (Department of Mathematics, Faculty of Science, LaPS Laboratory, Badji Mokhtar University) ;
  • Hacene Boutabia (Department of Mathematics, Faculty of Science, LaPS Laboratory, Badji Mokhtar University)
  • Received : 2022.09.14
  • Accepted : 2023.02.09
  • Published : 2023.09.14

Abstract

This paper deals with differentiability of solutions of neutral stochastic differential equations with respect to the initial data in the G-framework. Since the initial data belongs to the space BC ([-r, 0] ; ℝn) of bounded continuous ℝn-valued functions defined on [-r, 0] (r > 0), the derivative belongs to the Banach space 𝓛BC (ℝn) of linear bounded operators from BC ([-r, 0] ; ℝn) to ℝn. We give the neutral stochastic differential equation of the derivative. In addition, we exhibit two examples confirming the accuracy of the obtained results.

Keywords

Acknowledgement

The authors acknowledge and deeply appreciate the careful reading and useful suggestions of the anonymous reviewers, which has improved the quality of this paper.

References

  1. M. Abouagwa and J. Li, G-Neutral Stochastic Differential Equations With Variable Delay And non-Lipschitz Coefficients, Discrete Contin. Dyn. Syst. Ser. B. 25 (2020), 1583-1606. https://doi.org/10.3934/dcdsb.2019241
  2. O. Aryasova and A.Pilipenko, On differentiability with respect to the initial data of the solution to an SDE with a Levy noise and discontinuous coefficients, Stochastics. 86 (2014), 643-654. https://doi.org/10.1080/17442508.2013.865133
  3. R. Bougherra, H. Boutabia, and M.Belksier, Differentiability of Stochastic Differential Equation Driven by d-dimensional G-Brownian Motion with Respect to the Initial Data, Bull. Iranian Math. Soc. 47 (2021), 231-255. https://doi.org/10.1007/s41980-020-00490-7
  4. L. Denis, M. Hu, and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal. 34 (2011), 139-161. https://doi.org/10.1007/s11118-010-9185-x
  5. F. Faizullah, A. A. Memom, M. A. Rana, and M. Hanif, The p-moment exponential estimates for neutral stochastic functional differential equations in the G-framework, J. Comput. Anal. Appl. 26 (2019), 81-90.
  6. F. Faizullah, M. Bux, M. Rana, and G. ur Rahman, Existence and stability of solution to non-linear neutral stochastic functional differential equations in the framework of G-Brownian motion, Adv. Differ. Equ. 2017 (2017), Article Number 350 (2017).
  7. F. Hartung, Differentiability of solutions with respect to parameters in neutral differential equations with state-dependent delays, J. Math. Anal. Appl. 324 (2006), 504-524. https://doi.org/10.1016/j.jmaa.2005.12.025
  8. F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, Functional differential equations with state-dependent delay: theory and applications, in Handbook of Differential Equations: Ordinary Differential Equations, Vol. 3, 435-545, edited by A. Canada, P. Drabek and A. Fonda, Elsevier, North-Holand, 2006.
  9. M. Hu and S. Peng, On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), 539-546. https://doi.org/10.1007/s10255-008-8831-1
  10. Y. Izumi, Higher order differentiability of solutions to backward stochastic differential equations, Stochastics 90 (2017), 102-150. https://doi.org/10.1080/17442508.2017.1315119
  11. Q. Lin, Differentiability of stochastic differential equations driven by the G-Brownian motion, Sci. China Math. 56 (2013), 1087-1107. https://doi.org/10.1007/s11425-012-4534-4
  12. S. Peng, G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito Type . In: Benth, F.E., Di Nunno, G., Lindstrom, T., Oksendal, B., Zhang, T. (eds) Stochastic Analysis and Applications. Abel Symposia, Vol. 2, 541-567, Springer, Berlin, Heidelberg, 2007.
  13. S. Peng, G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty, preprint (2007); arXiv:0711.2834.
  14. S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl. 118 (2008), 2223-2253. https://doi.org/10.1016/j.spa.2007.10.015
  15. S. Peng, Nonlinear Expectation and Stochastic Calculus under Uncertainty, Springer, Berlin, 2019.
  16. A. Slavik, Generalized differential equations: Differentiability of solutions with respect to initial conditions and parameters, J. Math. Anal. Appl. 402 (2013), 261-274. https://doi.org/10.1016/j.jmaa.2013.01.027
  17. D. Zhang and Z. Chen, Exponential stability for stochastic differential equation driven by G-Brownian motion, Appl. Math. Lett. 25 (2012), 1906-1910. https://doi.org/10.1016/j.aml.2012.02.063