• Title/Summary/Keyword: data space approach

Search Result 681, Processing Time 0.03 seconds

Robust Nonlinear Control of a 6 DOF Parallel Manipulator : Task Space Approach

  • Kim, Hag-Seong;Youngbo Shim;Cho, Young-Man;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1053-1063
    • /
    • 2002
  • This paper presents a robust nonlinear controller for a f degree of freedom (DOF) parallel manipulator in the task space coordinates. The proposed control strategy requires information on orientations and translations in the task space unlike the joint space or link space control scheme. Although a 6 DOF sensor may provide such information in a straightforward manner, its cost calls for a more economical alternative. A novel indirect method based on the readily available length information engages as a potential candidate to replace a 6 DOF sensor. The indirect approach generates the necessary information by solving the forward kinematics and subsequently applying alpha-beta-gamma tracker With the 6 DOF signals available, a robust nonlinear task space control (RNTC) scheme is proposed based on the Lyapunov redesign method, whose stability is rigorously proved. The performance of the proposed RNTC with the new estimation scheme is evaluated via experiments. First, the results of the estimator are compared with the rate-gyro signals, which indicates excellent agreement. Then, the RNTC with on-line estimated 6 DOF data is shown to achieve excellent control performance to sinusoidal inputs, which is superior to those of a commonly used proportional-plus-integral-plus-derivative controller with a feedforward friction compensation under joint space coordinates and the nonlinear controller under task space coordinates.

A Data Mining Approach for Selecting Bitmap Join Indices

  • Bellatreche, Ladjel;Missaoui, Rokia;Necir, Hamid;Drias, Habiba
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.177-194
    • /
    • 2007
  • Index selection is one of the most important decisions to take in the physical design of relational data warehouses. Indices reduce significantly the cost of processing complex OLAP queries, but require storage cost and induce maintenance overhead. Two main types of indices are available: mono-attribute indices (e.g., B-tree, bitmap, hash, etc.) and multi-attribute indices (join indices, bitmap join indices). To optimize star join queries characterized by joins between a large fact table and multiple dimension tables and selections on dimension tables, bitmap join indices are well adapted. They require less storage cost due to their binary representation. However, selecting these indices is a difficult task due to the exponential number of candidate attributes to be indexed. Most of approaches for index selection follow two main steps: (1) pruning the search space (i.e., reducing the number of candidate attributes) and (2) selecting indices using the pruned search space. In this paper, we first propose a data mining driven approach to prune the search space of bitmap join index selection problem. As opposed to an existing our technique that only uses frequency of attributes in queries as a pruning metric, our technique uses not only frequencies, but also other parameters such as the size of dimension tables involved in the indexing process, size of each dimension tuple, and page size on disk. We then define a greedy algorithm to select bitmap join indices that minimize processing cost and verify storage constraint. Finally, in order to evaluate the efficiency of our approach, we compare it with some existing techniques.

Information Structured Space and Ambient Intelligent Systems for a Librarian Robot (사서로봇을 위한 정보구조화 공간과 환경지능 시스템)

  • Kim, Bong-Keun;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.147-154
    • /
    • 2009
  • Visions of ubiquitous robotics and ambient intelligence involve distributing information, knowledge, computation over a wide range of servers and data storage devices located all over the world, and integrating tiny microprocessors, actuators, and sensors into everyday objects as well in order to make them smart. In this paper, we introduce our ongoing research effort aimed at realizing ubiquitous robots in an information structured space. For this, a ubiquitous space and ambient intelligent systems for a librarian robot are introduced and the RFID technology based approach for these systems is described.

  • PDF

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Perception and action: Approach to convergence on embodied cognition (지각과 행위: 체화된 인지와의 융복합적 접근)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.555-564
    • /
    • 2016
  • Space perception is generally treated as a problem relevant to the ability to recognize objects. Alternatively, the data from shape perception studies contributes to discussions about the geometry of visual space. This geometry is generally acknowledged not to be Euclidian, but instead, elliptical, hyperbolic or affine, which is to say, something that admits the distortions found in so many shape perception studies. The purpose of this review article is to understand perceived shape and the geometry of visual space in the context of visually guided action. Thus, two prominent approaches that explain the relation between perception and action were compared. It is important to understand the fundamental information of how human perceive visual space and perform visually guided action for the convergence on embodied cognition, and further on artificial intelligence researches.

Signal Space Detection for High Data Rate Channels (고속 데이터 전송 채널을 위한 신호공간 검출)

  • Jeon , Taehyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.10 s.340
    • /
    • pp.25-30
    • /
    • 2005
  • This paper generalizes the concept of the signal space detection to construct a fixed delay tree search (FDTS) detector which estimates a block of n channel symbols at a time. This technique is applicable to high speed implementation. Two approaches are discussed both of which are based on efficient signal space partitioning. In the first approach, symbol detection is performed based on a multi-class partitioning of the signal space. This approach is a generalization of binary symbol detection based on a two-class pattern classification. In the second approach, binary signal detection is combined with a look-ahead technique, resulting in a highly parallel detector architecture.

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

Hidden Line Removal for Technical Illustration Based on Visualization Data (기술도해 생성을 위한 가시화 데이터 은선 제거 알고리즘)

  • Shim, Hyun-Soo;Choi, Young;Yang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.455-463
    • /
    • 2006
  • Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.

Integrating IndoorGML and Indoor POI Data for Navigation Applications in Indoor Space

  • Claridades, Alexis Richard;Park, Inhye;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.359-366
    • /
    • 2019
  • Indoor spatial data has great importance as the demand for representing the complex urban environment in the context of providing LBS (Location-based Services) is increasing. IndoorGML (Indoor Geographic Markup Language) has been established as the data standard for spatial data in providing indoor navigation, but its definitions and relationships must be expanded to increase its applications and to successfully delivering information to users. In this study, we propose an approach to integrate IndoorGML with Indoor POI (Points of Interest) data by extending the IndoorGML notion of space and topological relationships. We consider two cases of representing Indoor POI, by 3D geometry and by point primitive representation. Using the concepts of the NRS (node-relation structure) and multi-layered space representation of IndoorGML, we define layers to separate features that represent the spaces and the Indoor POI into separate, but related layers. The proposed methodology was implemented with real datasets to evaluate its effectiveness for performing indoor spatial analysis.

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.