Transactions of the Korean Society of Automotive Engineers
/
v.18
no.1
/
pp.31-36
/
2010
Collecting all failures during life cycle of vehicle is not easy way because its life cycle is normally over 10 years. Warranty period can help gathering failures data because most customers try to repair its failures during warranty period even though small failures. This warranty data, which means failures during warranty period, can be a good resource to predict initial reliability and permanence reliability. However uncertainty regarding reliability prediction remains because this data is censored. University of Wuppertal and major auto supplier developed the reliability prognosis model considering censored data and this model introduce to predict reliability estimate further "failure candidate". This paper predicts reliability of telecommunications system in vehicle using the model and describes data structure for reliability prediction.
Journal of the Korean Society of Systems Engineering
/
v.10
no.1
/
pp.43-48
/
2014
The door system for railway vehicles is the critical device directly influences on safety and satisfaction of passengers, Recently, electrical type of passenger door system is widely used for EMU type train instead of pneumatic type of passenger door system. The estimation of MTBF and failure rates for electrical type door system is essential. The manufacturor simply provides intrinsic reliability data for the railway operator. But actual reliability data based on operation and maintenance data is not complying with intrinsic reliability. In this study, operation and failure data associated with electrical door system were analyzed in order to determine actual MTBF and failure data. Intrinsic reliability data and service reliability data were studied to finallize much more practical and reliable actual reliability. Relax 2011 was used to predict intrinsic reliability and 217Plus model was also used to estimate of actual reliability data based on field data. Furthermore, it is necessary to keep studying on reliability prediction methodology and applying it in the field and doing research on improvement of reliability through feedback as well.
There are a lot of different data in a company. Some of the data can be modified to produce valuable information on reliability. In this study different types of data that can be obtained in a company are reviewed. Reliability related data that can be taken throughout the life cycle of a product are also reviewed. Developing a method of gathering all of the pertinent data from the various sources and databases and pulling them into one central location is explained.
The Journal of Information Technology and Database
/
v.6
no.1
/
pp.15-25
/
1999
We propose an extended relational data model which can represent the reliability of data. In this paper, the reliability of data is defined as the reliability of the source, from which the data originated. We represent the reliability of data at the level of attribute values, instead of tuples, then define the selection, product and join operators.
LEDs have rapidly replaced old light devices such as incandescent or fluorescent lamps, and have been widely applied in general lighting, signals, automobile, signs and others. Since LEDs are for both indoor and outdoor use, temperature and humidity inevitably affect its reliability. We explain the result of the degradation life test on LEDs, and guide to reliability analysis procedure. Analysis on reliability measures are performed by Weibull++6 program, and a common shape parameter of Weibull distribution on the LED is suggested. Also, we make a description of reliability analysis procedures for the degradation data using collected test data from degradation tests. Reliability analysis procedures are consisted of estimating degradation models and failure time, verifying of distribution and parameters of the distribution, and estimating of reliability measures. Finally, this paper suggests reliability analysis method for light characteristics on LEDs.
Purpose: The purpose of this study is to develop a quality assurance model and to determine appropriate warranty period for a guided missile using its field data. Methods: 10 years of actual firing data is collected from the defense industry company and military. Parametric maximum likelihood estimation for a reliability function is determined with the data. Results: The reliability function estimates average lifetime of the missile. That function shows a user requirement, 80% reliability (lifetime) is come up when 8 years have passed, which is longer than the estimates in the missile's development phase. Conclusion: Quality assurance warranty for a guided missile must be established with actual test data. It is necessary to update and modify the reliability prediction and the warranty period with actual field test data.
Purpose: Previously, missile reliability prediction is based on theoretical failure prediction model. It has shown that the predicted reliability is inadequate to real field data. Although an MTTF based reliability prediction method using real field data has recently been studied to overcome this issue. In this paper, we present a more realistic method, considering MTBF concept, to predict missile reliability. Methods: In this paper we proposed a modified survival model. This model is considering MTBF as its core concept, and failed missiles in the model are to be repaired and redeployed. We compared the modified model (MTBF) and the previous model (MTTF) in terms of fitness against the real failure data. Results: The reliability prediction result of MTBF based model is closer to fields failure data set than that of MTTF based model. Conclusion: The proposed MTBF concept is more fitted to real failure data of missile than MTTF concept. The methodology of this study can be applied to analyze field failure data of other similar missiles.
Kim Bong-Suk;Lee Soo-Hun;Song Jun-Yeob;Lee Seung-Woo
Transactions of the Korean Society of Machine Tool Engineers
/
v.14
no.1
/
pp.15-23
/
2005
For reliability assessment for machine tools, failure mode analyses by two viewpoints were studied in this paper. First, this study developed the reliability data analysis program, which searches f3r optimal failure distribution like failure rate or MTBF(Mean Time Between Failure) using failure data and reliability test data of mechanical parts in the web. Moreover, this data analysis program saves both failure data or reliability data and their failure rate or MTBF for database establishment. Second, this paper conducted failure mode analysis through such performance tests as circular movement test and vibration testing for machine tools when reliability data is not available. A developed web-based analysis program shows correlations between failure mode and performance test result and also accumulates all the data. These kinds of data analysis programs and stored data furnish valuable information for improving the reliability of mechanical system.
Reliability growth rate (or reliability growth curve slope) have the two cases of trend as a constant or changing one during the reliability growth testing. The changing case is very common situation. The reasons of reliability growth rate changing are that the failures to follow the NHPP (None-Homogeneous Poisson Process), and the solutions implemented during test to break out other problems or not to take out all of the root cause permanently. If the changing were big, the "Goodness of Fit (GOF)" of reliability growth curve to test data would be very low and then reduce the accuracy of assessing result with test data. In this research, we are using Duane model and AMSAA model for assessing test data and projecting the reliability level of complex and repairable system as like construction equipment and vehicle. In case of no changing in reliability growth rate, it is reasonable for reliability engineer to implement the original Duane model (1964) and Crow-AMSAA model (1975) for the assessment and projection activity. However, in case of reliability growth rate changing, it is necessary to find the method to increase the "GOF" of reliability growth curves to test data. To increase GOF of reliability growth curves, it is necessary to find the proper parameter calculation method of interesting reliability growth models that are applicable to the situation of reliability growth rate changing. Since the Duane and AMSAA models have a characteristic to get more strong influence from the initial test (or failure) data than the latest one, the both models have a limitation to contain the latest test data information that is more important and better to assess test data in view of accuracy, especially when the reliability growth rate changing. The main objective of this research is to find the parameter calculation method to reflect the latest test data in the case of reliability growth rate changing. According to my experience in vehicle and construction equipment developments over 18 years, over the 90% in the total development cases are with such changing during the developing test. The objective of this research was to develop the newly assessing method and the process for GOF level increasing in case of reliability growth rate changing that would contribute to achieve more accurate assessing and projecting result. We also developed the new evaluation method for GOF that are applicable to the both models as Duane and AMSAA, so it is possible to compare it between models and check the effectiveness of new parameter calculation methods in any interesting situation. These research results can reduce the decision error for development process and business control with the accurately assessing and projecting result.
This paper deals with OO aircraft mission reliability prediction. To demonstrate user-required mission reliability, it is calculated with use general formulae which are used in reliability engineering. The mission reliability of OO aircraft is calculated in considering conversion factor (CF) on the each subsystems' MTBF. The prediction results are explained only the state at present time. Because these data are not real data in operational environments. Therefore, in the case of OO aircraft, it has to be needed collecting the real and renewal data which are operational and empirical. After that, continuing the data upgrading, it is easily closed to the more exact reliability value.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.