• Title/Summary/Keyword: data learning process

Search Result 2,087, Processing Time 0.029 seconds

A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems (분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법)

  • Kim Eun-Mi;Park Seong-Mi;Kim Kwang-Hee;Lee Bae-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1021-1028
    • /
    • 2005
  • The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Comparison of Cognitive Loads between Koreans and Foreigners in the Reading Process

  • Im, Jung Nam;Min, Seung Nam;Cho, Sung Moon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.293-305
    • /
    • 2016
  • Objective: This study aims to measure cognitive load levels by analyzing the EEG of Koreans and foreigners, when they read a Korean text with care selected by level from the grammar and vocabulary aspects, and compare the cognitive load levels through quantitative values. The study results can be utilized as basic data for more scientific approach, when Korean texts or books are developed, and an evaluation method is built, when the foreigners encounter them for learning or an assignment. Background: Based on 2014, the number of the foreign students studying in Korea was 84,801, and they increase annually. Most of them are from Asian region, and they come to Korea to enter a university or a graduate school in Korea. Because those foreign students aim to learn within Universities in Korea, they receive Korean education from their preparation for study in Korea. To enter a university in Korea, they must acquire grade 4 or higher level in the Test of Proficiency in Korean (TOPIK), or they need to complete a certain educational program at each university's affiliated language institution. In such a program, the learners of the Korean language receive Korean education based on texts, except speaking domain, and the comprehension of texts can determine their academic achievements in studying after they enter their desired schools (Jeon, 2004). However, many foreigners, who finish a language course for the short-term, and need to start university study, cannot properly catch up with university classes requiring expertise with the vocabulary and grammar levels learned during the language course. Therefore, reading education, centered on a strategy to understand university textbooks regarded as top level reading texts to the foreigners, is necessary (Kim and Shin, 2015). This study carried out an experiment from a perspective that quantitative data on the readers of the main player of reading education and teaching materials need to be secured to back up the need for reading education for university study learners, and scientifically approach educational design. Namely, this study grasped the difficulty level of reading through the measurement of cognitive loads indicated in the reading activity of each text by dividing the difficulty of a teaching material (book) into eight levels, and the main player of reading into Koreans and foreigners. Method: To identify cognitive loads indicated upon reading Korean texts with care by Koreans and foreigners, this study recruited 16 participants (eight Koreans and eight foreigners). The foreigners were limited to the language course students studying the intermediate level Korean course at university-affiliated language institutions within Seoul Metropolitan Area. To identify cognitive load, as they read a text by level selected from the Korean books (difficulty: eight levels) published by King Sejong Institute (Sejonghakdang.org), the EEG sensor was attached to the frontal love (Fz) and occipital lobe (Oz). After the experiment, this study carried out a questionnaire survey to measure subjective evaluation, and identified the comprehension and difficulty on grammar and words. To find out the effects on schema that may affect text comprehension, this study controlled the Korean texts, and measured EEG and subjective satisfaction. Results: To identify brain's cognitive load, beta band was extracted. As a result, interactions (Fz: p =0.48; Oz: p =0.00) were revealed according to Koreans and foreigners, and difficulty of the text. The cognitive loads of Koreans, the readers whose mother tongue is Korean, were lower in reading Korean texts than those of the foreigners, and the foreigners' cognitive loads became higher gradually according to the difficulty of the texts. From the text four, which is intermediate level in difficulty, remarkable differences started to appear in comparison of the Koreans and foreigners in the beginner's level text. In the subjective evaluation, interactions were revealed according to the Koreans and foreigners and text difficulty (p =0.00), and satisfaction was lower, as the difficulty of the text became higher. Conclusion: When there was background knowledge in reading, namely schema was formed, the comprehension and satisfaction of the texts were higher, although higher levels of vocabulary and grammar were included in the texts than those of the readers. In the case of a text in which the difficulty of grammar was felt high in the subjective evaluation, foreigners' cognitive loads were also high, which shows the result of the loads' going up higher in proportion to the increase of difficulty. This means that the grammar factor functions as a stress factor to the foreigners' reading comprehension. Application: This study quantitatively evaluated the cognitive loads of Koreans and foreigners through EEG, based on readers and the text difficulty, when they read Korean texts. The results of this study can be used for making Korean teaching materials or Korean education content and topic selection for foreigners. If research scope is expanded to reading process using an eye-tracker, the reading education program and evaluation method for foreigners can be developed on the basis of quantitative values.

Design Evaluation Model Based on Consumer Values: Three-step Approach from Product Attributes, Perceived Attributes, to Consumer Values (소비자 가치기반 디자인 평가 모형: 제품 속성, 인지 속성, 소비자 가치의 3단계 접근)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.57-76
    • /
    • 2017
  • Recently, consumer needs are diversifying as information technologies are evolving rapidly. A lot of IT devices such as smart phones and tablet PCs are launching following the trend of information technology. While IT devices focused on the technical advance and improvement a few years ago, the situation is changed now. There is no difference in functional aspects, so companies are trying to differentiate IT devices in terms of appearance design. Consumers also consider design as being a more important factor in the decision-making of smart phones. Smart phones have become a fashion items, revealing consumers' own characteristics and personality. As the design and appearance of the smartphone become important things, it is necessary to examine consumer values from the design and appearance of IT devices. Furthermore, it is crucial to clarify the mechanisms of consumers' design evaluation and develop the design evaluation model based on the mechanism. Since the influence of design gets continuously strong, various and many studies related to design were carried out. These studies can classify three main streams. The first stream focuses on the role of design from the perspective of marketing and communication. The second one is the studies to find out an effective and appealing design from the perspective of industrial design. The last one is to examine the consumer values created by a product design, which means consumers' perception or feeling when they look and feel it. These numerous studies somewhat have dealt with consumer values, but they do not include product attributes, or do not cover the whole process and mechanism from product attributes to consumer values. In this study, we try to develop the holistic design evaluation model based on consumer values based on three-step approach from product attributes, perceived attributes, to consumer values. Product attributes means the real and physical characteristics each smart phone has. They consist of bezel, length, width, thickness, weight and curvature. Perceived attributes are derived from consumers' perception on product attributes. We consider perceived size of device, perceived size of display, perceived thickness, perceived weight, perceived bezel (top - bottom / left - right side), perceived curvature of edge, perceived curvature of back side, gap of each part, perceived gloss and perceived screen ratio. They are factorized into six clusters named as 'Size,' 'Slimness,' 'No-Frame,' 'Roundness,' 'Screen Ratio,' and 'Looseness.' We conducted qualitative research to find out consumer values, which are categorized into two: look and feel values. We identified the values named as 'Silhouette,' 'Neatness,' 'Attractiveness,' 'Polishing,' 'Innovativeness,' 'Professionalism,' 'Intellectualness,' 'Individuality,' and 'Distinctiveness' in terms of look values. Also, we identifies 'Stability,' 'Comfortableness,' 'Grip,' 'Solidity,' 'Non-fragility,' and 'Smoothness' in terms of feel values. They are factorized into five key values: 'Sleek Value,' 'Professional Value,' 'Unique Value,' 'Comfortable Value,' and 'Solid Value.' Finally, we developed the holistic design evaluation model by analyzing each relationship from product attributes, perceived attributes, to consumer values. This study has several theoretical and practical contributions. First, we found consumer values in terms of design evaluation and implicit chain relationship from the objective and physical characteristics to the subjective and mental evaluation. That is, the model explains the mechanism of design evaluation in consumer minds. Second, we suggest a general design evaluation process from product attributes, perceived attributes to consumer values. It is an adaptable methodology not only smart phone but also other IT products. Practically, this model can support the decision-making when companies initiative new product development. It can help product designers focus on their capacities with limited resources. Moreover, if its model combined with machine learning collecting consumers' purchasing data, most preferred values, sales data, etc., it will be able to evolve intelligent design decision support system.

A Study on the Stereotype of ICT SMEs' R&D: Empirical Evidence from Korea (ICT 중소기업 R&D의 스테레오타입에 대한 연구 : 한국의 사례를 중심으로)

  • Jun, Seung-pyo;Choi, San;Jung, JaeOong
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.334-367
    • /
    • 2017
  • The ICT industry has been the main driver of Korea's economy with international competitiveness and is expected to be the growth engine that will revitalize the currently depressed economy. A broad range of different perspectives and opinions on the industry exist in Korea and overseas. Some of these are stereotypes, not all of which are based on objective evidence. Stereotypes refer to widely-held fixed opinions on a specific group and do not necessarily have negative connotations. However, they should not be viewed lightly because they can substantially affect decision-making process. In this regard, this study sought to review the stereotypes of ICT industry and identify objective and relative stereotypes. In the study, a decision-tree analysis was conducted on a survey result of 3,300 small and medium-sized enterprises (SMEs) in order to identify Korean ICT companies' characteristics that distinguish them from other technology companies. The decision-tree analysis, a data mining process based on machine learning, took a total of 291 variables into account in 10 subjects such as: corporate business in general, technology development activities as well as organization and people in technology development. Identifying the variables that distinguish ICT companies from other technology companies with the decision-tree analysis, the study then came up with a list of objective stereotypes of ICT companies. The findings from the stereotypes of Korean ICT companies are as follows. First, the companies are in need of technology policies that help R&D planning and market penetration. Second, policies must better support the companies working to sell new products or explore new business. Third, the companies need policies that support secure protection of development outcomes and proper management of IP rights. Fourth, the administrative procedures related to governmental support for ICT companies' R&D projects must be simplified. It is hoped that the outcome of this study will provide meaningful guidance in establishment, implementation and evaluation of technology policies for ICT SMEs, particularly to policymakers or researchers in relevant government agencies who determine R&D policies for ICT SMEs.

Tracing the Development and Spread Patterns of OSS using the Method of Netnography - The Case of JavaScript Frameworks - (네트노그라피를 이용한 공개 소프트웨어의 개발 및 확산 패턴 분석에 관한 연구 - 자바스크립트 프레임워크 사례를 중심으로 -)

  • Kang, Heesuk;Yoon, Inhwan;Lee, Heesan
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.131-150
    • /
    • 2017
  • The purpose of this study is to observe the spread pattern of open source software (OSS) while establishing relations with surrounding actors during its operation period. In order to investigate the change pattern of participants in the OSS, we use a netnography on the basis of online data, which can trace the change patterns of the OSS depending on the passage of time. For this, the cases of three OSSs (e.g. jQuery, MooTools, and YUI), which are JavaScript frameworks, were compared, and the corresponding data were collected from the open application programming interface (API) of GitHub as well as blog and web searches. This research utilizes the translation process of the actor-network theory to categorize the stages of the change patterns on the OSS translation process. In the project commencement stage, we identified the type of three different OSS-related actors and defined associated relationships among them. The period, when a master commences a project at first, is refined through the course for the maintenance of source codes with persons concerned (i.e. project growth stage). Thereafter, the period when the users have gone through the observation and learning period by being exposed to promotion activities and codes usage respectively, and becoming to active participants, is regarded as the 'leap of participants' stage. Our results emphasize the importance of promotion processes in participants' selection of the OSS for participation and confirm the crowding-out effect that the rapid speed of OSS development retarded the emergence of participants.

  • PDF

A Perception of Beginning Earth Science Teachers on Porphyritic Texture (반상조직에 대한 초임 지구과학교사들의 인식)

  • Kim, Yong-Hwan;Chung, Duk-Ho;Cho, Kyu-Seong;Choi, Jin-A;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.860-870
    • /
    • 2011
  • This study is to explore the Pedagogical Content Knowledge of beginning earth science teachers about the porphyritic texture of igneous rocks, and to suggest the teaching device that can prevent a trial and error of students in earth science instruction. We developed an interview guideline concerned with basic perception on the porphyritic texture, formation condition and formation process of porphyritic rocks, teaching and learning on porphyritic rocks for it. And data was collected from 5 beginning earth science teachers (3 high schools, 2 middle schools) through a group discussion method. In result, despite the porphyritic texture can be found at hypabyssal rocks as well as volcano rocks and plutonic rocks, most beginning earth science teachers cognized that it could be found at hypabyssal rocks only by focusing the formation depth of hypabyssal rocks. Also, the formation of porphyritic texture should be considered the factors such as cooling rate, nucleation density, growth rate, growth time, etc. However they mainly reflected the formation temperature and growth rate as it's parameter. Participants have wrongly perceived that a phenocryst necessarily differs from a groundmass on chemical composition. And they are inclined to discriminate phenocryst from groundmass through their chemical differences, instead of grain size.

Study on the Direction of College Admission through the Analysis of the 2015 Revised Curriculum : Focused on In-depth Interview with Experts (2015 개정 교육과정 운영 실태 분석을 통한 대학 입시 방향 연구: 전문가 심층 인터뷰를 중심으로)

  • Baek, Min-kyung;Baek, Kwang-ho;Lee, Je-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.422-434
    • /
    • 2020
  • This study aims to analyze the types of college admission that should be strengthened or reflected in universities and to suggest the direction of entrance examination by identifying the actual implementation of the literature-science integrated 2015 revised national curriculum. In order to do so, in-depth interviews on the current state were executed to five curriculum experts. As a result of the interview, it was found that the introduction and adoption of clear admission types look into the inner side of high school life are necessary. Also, it is required to establish specific criteria for student selection expand in-depth interviews related to learning activities in high school, strengthen evaluation competence of admission staffs and recruit more evaluation personnel. In addition, in order to revitalize the 2015 revised curriculum, it is necessary to evaluate how many subjects, especially in career-related subjects, students have taken in order to expand the school record-focused system. For this, it is required to extract evaluation elements and criteria of universities that can grasp continuous and active role performance, and to design a typical design that can objectively judge them. This study can contribute to the settlement of the selection process that can revitalize public education. And it is expected that the selection of the talents desired by the university will be used as a possible basic data.