Acknowledgement
본 연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 창의도전연구기반지원사업의 지원(No. 2021R1I1A1A01058373)과 2022학년도 부산대학교 신임교수연구정착금 지원으로 이루어졌음.
References
- Boyaci S., and H. Kucukonder 2022, A research on nondestructive leaf area estimation modeling for some apple cultivars. Erwerbs-Obstbau 64:1-7. doi:10.1007/s10341-021-00619-w
- Commercialization Promotion Agency for R&D Outcome (COMPA) 2019, S&T Market Report, Vol. 69. COMPA, Seoul, Korea.
- De Lucena L.R.R., M.L.D.M.V. Leite, C.B. da Cruz Junior, J.D. Carvalho, E.R. dos Santos, and A.D.M. de Oliveira 2019, Estimation of cladode area of Nopalea cochenillifera using digital images. J Prof Assoc Cactus Dev 21:32-42. doi:10.56890/jpacd.v21i.4
- Deng Y., K. Yu, X. Yao, Q. Xie, Y. Hsieh, and J. Liu 2019, Estimation of Pinus massoniana leaf area using terrestrial laser scanning. Forests 10:660. doi:10.3390/f10080660
- Fakir M.S.A., M.A.B. Siddique, A. Islam, M.R. Ismail, and M.K. Uddin 2013, Leaf area estimation by linear regression models in pigeonpea (Cajanus cajan (L.) Millsp.). J Food Agric Environ 11:312-316.
- Gang M.S., H.J. Kim, and D.W. Kim 2022, Estimation of greenhouse lettuce growth indices based on a two-stage CNN using RGB-D images. Sensors 22:5499. (in Korean) doi:10.3390/s22155499
- Hajjdiab H., and A. Obaid 2010, A vision-based approach for nondestructive leaf area estimation. In 2010 The 2nd Conference on Environmental Science and Information Application Technology IEEE, pp 53-56. doi:10.1109/ESIAT.2010.5568973
- He K., X. Zhang, S. Ren, and J. Sun 2016, Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770-778. doi:10.1109/CVPR.2016.90
- Kim S.K., Lee S.K., Lee H.J., and Lee J.K. 2017, Horticultural crop growth models for smart farms: utilization of descriptive, explanatory, and structural growth models. Magazine Korean Soc Agric Engin 59:28-37. (in Korean)
- Korea Rural Economic Institute (KREI) 2006, Agriculture and Rural Economy Trends Spring 2006. KREI, Naju, Korea. (in Korean)
- Korea Rural Economic Institute (KREI) 2016, A study on analyzing the realities of smart farm operations and researching development direction. KREI, Naju, Korea. (in Korean)
- Launay M., and M. Guerif 2003, Ability for a model to predict crop production variability at the regional scale: an evaluation for sugar beet. Agronomie 23:135-146. doi:10.1051/agro:2002078
- Mack L., F. Capezzone, S. Munz, H.P. Piepho, W. Claupein, T. Phillips, and S. Graeff-Honninger 2017, Nondestructive leaf area estimation for chia. Agron J 109:1960-1969. doi:10.2134/agronj2017.03.0149
- Nasiri A., A. Taheri-Garavand, D. Fanourakis, Y.D. Zhang, and N. Nikoloudakis 2021, Automated grapevine cultivar identification via leaf imaging and deep convolutional neural networks: a proof-of-concept study employing primary iranian varieties. Plants 10:1628. doi:10.3390/plants10081628
- National Assembly Budget Office (NABO) 2022, Current status and improvement tasks of the smart agriculture fostering project. NABO, Seoul, Korea. (in Korean)
- National Information Society Agency (NIA) 2019, AI INsight Report Vol. 01. NIA, Daegu, Korea. (in Korean)
- NICE Information Service Co., Ltd. (NICE) 2020, GREENPLUS Technical Analysis Report. NICE, Seoul, Korea. (in Korean)
- Peksen E. 2007, Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Sci Hortic 113:322-328. doi:10.1016/j.scienta.2007.04.003
- Simonyan K., and A. Zisserman 2014, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Souza M.C., and G. Habermann 2014, Non-destructive equations to estimate the leaf area of Styrax pohlii and Styrax ferrugineus. Braz J Biol 74:222-225. doi:10.1590/1519-6984.17012
- Zhang L., Z. Xu, D. Xu, J. Ma, Y. Chen, and Z. Fu 2020, Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic Res 7:124. doi:10.1038/s41438-020-00345-6
- Zhang W. 2020, Digital image processing method for estimating leaf length and width tested using kiwifruit leaves (Actinidia chinensis Planch). PloS ONE 15:e0235499. doi:10.1371/journal.pone.0235499
- Zoph B., and Q.V. Le 2016, Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578.
- Zoph B., V. Vasudevan, J. Shlens, and Q.V. Le 2018, Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 8697-8710. doi:10.1109/CVPR.2018.00907