• 제목/요약/키워드: cytoplasmic localization

검색결과 79건 처리시간 0.033초

Prognostic Involvement of Nucleophosmin Mutations in Acute Myeloid Leaukemia

  • Shahab, Sadaf;Shamsi, Tahir Sultan;Ahmed, Nuzhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5615-5620
    • /
    • 2013
  • Nucleophosmin (NPM1) is a protein of highly conserved nature which works as a molecular chaperone and is mostly found in nucleoli. NPM also involved in the maturation of preribosomes and duplication of centrosomes. Furthermore, it is also active in control and regulation of the ARF-p53 tumor suppressor pathway. A high rate of incidence and prognostic involvement is reported by various authors in AML patients. In AML it behaves as a favorable prognostic marker. NPM mutations are more frequently associated with normal-karyotype AML and are usually absent in patients having abnormal or poor cytogenetic. NPM mutations are not frequent in other hematopoietic tumors. Two main types of mutations have been described to date. Both of these cause abnormal cytoplasmic localization of NPM1. Their high incidence rate in normal karyoptype and their favorable nature m ake those mutations hot spot or front face mutations which should be checked before treatment starts.

전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포 (Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • 제16권2호
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Immuno Gold 표지법을 이용한 대장균내 Vibrio fluvialis MotX 단백질의 존재 부위 결정 (Detection of the Recombinant MotX Protein Vibrio fluvialis in Escherichia coli with Immuno-Gold Labeling Method)

  • 이종희;박제현;김선회;안선희;공인수
    • 한국수산과학회지
    • /
    • 제35권4호
    • /
    • pp.451-453
    • /
    • 2002
  • The rotation of the flagellar motor is powered by the electrochemical gradient of specific ions across the cytoplasmic membrane. Recently, the gents of the Na'-driven motor have been cloned from marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. Also, motx gene encoding a channel component of the sodium type flagellar motor was identified from Vibrio Huuiaiis (KTCC 2473). The amino acid sequence of MotX protein from V, Huvialis shared 90, 85, $85\%$ identity with V, cholerae, V. alginolyticus, V parahaemolyticus, respectively. We have studied the localization of the expressed MotX protein in Escherichia coli by immune-gold labeling of ultra-thin frozen section. Our observation of the expressed protein indicated that MotX protein could be existed as attachment to inner membrane in E. coli.

Characterization of Ha29, a Specific Gene for Helicoverpa armigera Single-nucleocapsid Nucleopolyhedrovirus

  • Guo, Zhong-Jian;An, Shi-Heng;Wang, Dun;Liu, Yan-He;Kumar, V. Shyam;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.354-359
    • /
    • 2005
  • Open reading frame 29 (ha29) is a gene specific for Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearSNPV). Sequence analyses showed that the transcription factor Tfb2 motif, bromodomain and Half-A-TPR (HAT) repeat were present at aa 66-82, 4-76, 55-90 of the Ha29 protein respectively. The product of Ha29 was detected in HearSNPV-infected HzAM1 cells at 3 h post-infection. Western blot analysis using a polyclonal antibody produced by immunizing a rabbit with purified GST-Ha29 fusion protein indicates that Ha29 is an early gene. The size of Ha29 product in infected HzAM1 cells was about 25 kDa, which was larger than the presumed size of 20.4 kDa. Tunicamycin treatment of HearSNPV-infected HzAM1 cells suggested that the Ha29 protein is N-glycosylated. Fluorescent confocal laser scanning microscope examination, and Western blot analysis of purified budded virus (BVs), occlusion-derived virus (ODVs), cell nuclear and cytoplasmic fraction, showed that the Ha29 protein was localized in the nucleus. Our results suggested that ha29 of HearSNPV encodes a non-structurally functional protein that may be associated with virus gene transcription in Helicoverpa hosts.

Alteration of LAR-RPTP Expression in the Rat Trigeminal Ganglion after Tooth Extraction

  • Kim, Sun-Hun;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • 제36권4호
    • /
    • pp.167-172
    • /
    • 2011
  • LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock

  • Lee, Jiwon;Park, Eonyoung;Kim, Ga Hye;Kwon, Ilmin;Kim, Kyungjin
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.6.1-6.10
    • /
    • 2018
  • Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.

Nuclear UPF1 Is Associated with Chromatin for Transcription-Coupled RNA Surveillance

  • Hong, Dawon;Park, Taeyoung;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.523-529
    • /
    • 2019
  • mRNA quality is controlled by multiple RNA surveillance machineries to reduce errors during gene expression processes in eukaryotic cells. Nonsense-mediated mRNA decay (NMD) is a well-characterized mechanism that degrades error-containing transcripts during translation. The ATP-dependent RNA helicase up-frameshift 1 (UPF1) is a key player in NMD that is mostly prevalent in the cytoplasm. However, recent studies on UPF1-RNA interaction suggest more comprehensive roles of UPF1 on diverse forms of target transcripts. Here we used subcellular fractionation and immunofluorescence to understand such complex functions of UPF1. We demonstrated that UPF1 can be localized to the nucleus and predominantly associated with the chromatin. Moreover, we showed that UPF1 associates more strongly with the chromatin when the transcription elongation and translation inhibitors were used. These findings suggest a novel role of UPF1 in transcription elongation-coupled RNA machinery in the chromatin, as well as in translation-coupled NMD in the cytoplasm. Thus, we propose that cytoplasmic UPF1-centric RNA surveillance mechanism could be extended further up to the chromatin-associated UPF1 and co-transcriptional RNA surveillance. Our findings could provide the mechanistic insights on extensive regulatory roles of UPF1 for many cellular RNAs.

Tollip negatively regulates mitophagy by promoting the mitochondrial processing and cytoplasmic release of PINK1

  • Shin, Woo Hyun;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.494-499
    • /
    • 2022
  • PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase that phosphorylates several substrates and exerts neuroprotective effects against stress-induced apoptotic cell death. Mutations in PINK1 have been linked to autosomal recessive forms of Parkinson's disease (PD). Mitophagy is a type of autophagy that selectively promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria to maintain cellular homeostasis. Toll-interacting protein (Tollip) was initially identified as a negative regulator of IL-1β receptor signaling, suppressing inflammatory TLR signaling cascades. Recently, Tollip has been reported to play a role in autophagy and is implicated in neurodegeneration. In this study, we determined whether Tollip was functionally linked to PINK1-mediated mitophagy. Our results demonstrated that Tollip promoted the mitochondrial processing of PINK1 and altered the localization of PINK1, predominantly to the cytosol. This action was attributed to increased binding of PINK1 to mitochondrial processing peptidase β (MPPβ) and the subsequent increase in MPPβ-mediated mitochondrial PINK1 cleavage. Furthermore, Tollip suppressed mitophagy following carbonyl cyanide m-chlorophenylhydrazone-induced mitochondrial dysfunction. These findings suggest that Tollip inhibits mitophagy via the PINK1/parkin pathway upon mitochondrial damage, leading to the blockade of PINK1-mediated neuroprotection.

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

면역황금표지법에 의한 일록춘폐흡충의 발육단계별 항원성부위 (Ultrastructural antigenic localization in Paragonimus iloktsuenesis during developmental stage by immunogold labeling method)

  • 김훈식;이옥란
    • Parasites, Hosts and Diseases
    • /
    • 제33권4호
    • /
    • pp.365-376
    • /
    • 1995
  • 일록춘폐흡충(Poragonimus iloktsuenensis)의 표피층, 장상피층 및 난황선의 조직항원 성을 발육단계별로, 면역황금표지법(immunogoldlabelingmethod)으로 관찰하였다. 일록춘폐흡충 으로 감염건 횐쥐(Sprague-Dawley)로 부터, 감염후 2주 3주, 4주, 5주 및 33주에 적출한 충체를 항원으로 사용하였고, 감염 후 10주의 흰쥐혈청을 항체로 사용하였다 조직항원성은 조직에 표지된 황금입자로 판정하였다. 표피층은 유약충으로부터 성충에 이르는 발육과정중 전반적으로 황금입자 표지가 많지 않았고 충체가 성숙되어감에 따라서 황금입자 표지가 다소 드물어지는 경향이 있었으나, 충체 개체별 항원 강도에 차이가 많았다. 장상피층과 난황선은 충체의 발육단계에 관계없이 많은 수의 황금입자가 표지되어 강한 항원성을 나타내었다. 이 실험의 결과, 일록춘폐흡충의 표피층 장강피층, 및 난황선은 중요한 조직항원 부위로 보이나, 표피층은 항원성이 낮은 편이고, 발육단계 및 개체별로 항인강도에 차이가 있었다. 장상피층 및 난황선도 개체별로 황금입자 표지강포에 다소의 차이는 있었으나 충체의 발육단계에 관계없이 계속해서 강한 항원성이 유지되는 조직부위로 보인다.

  • PDF