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Introduction 

Neisseria gonorrhoeae (gonococcus) is the etiological agent of gonorrhea, which causes 
the second most commonly occurring sexually transmitted infection. According to the 
Centers for Disease Control and Prevention, approximately 1.14 million infections are re-
ported yearly [1]. However, it was also reported that about 550,000 estimated cases are 
due to treatment failure, particularly associated with the emergence of multi-drug-resis-
tant gonorrhea strains [1]. Antibiotics' effectiveness in treating gonorrhea is dwindling 
due to the global spread of multi-drug-resistant strains. 

It has been found that adolescents, the elderly, and men who have intercourse with oth-
er men are at high risk of acquiring gonorrhea. Although men who have intercourse with 
men are frequently identified as having this infection, the risk depends on specific sexual 
practices, making both genders vulnerable to this infection [2]. Urethritis is often a result 
of this infection in men and presents with purulent discharge from the urethra [3]. In 
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comparison, infected women develop cervicitis and are frequently 
asymptomatic, although the infection can disperse to the urinary 
tract, leading to pelvic inflammatory disease [2,4]. Untreated in-
fections can lead to severe epididymitis, salpingitis, pelvic inflam-
matory disease, ectopic pregnancy, and infertility. 

This obligate human pathogen predominantly colonizes the 
mucosal epithelium of the reproductive tract. It causes infections 
via adherence to the mucosal epithelium, which is mediated by the 
bacterial pathogen's surface structures, which include type IV pili, 
opacity proteins, lipopolysaccharides, and porin [5]. Therefore, it 
is transmitted from an infected individual through direct hu-
man-to-human contact with the genital mucosa, anal mucosa, and 
oropharynx during sexual intercourse [6,7]. Untreated infections 
can lead to severe epididymitis, salpingitis, pelvic inflammatory 
disease, ectopic pregnancy, and infertility. Gonorrhea can also 
cause pregnancy complications and be passed on to children, re-
sulting in blindness if left untreated. 

This bacterial pathogen has shown a remarkable ability to devel-
op resistance to nearly all antimicrobials used for treatment for ap-
proximately 70–80 years. Target alteration or reduction of target 
affinity is one of the critical resistance mechanisms in N. gonorrhoe-
ae. In a recent study, the bacteria were found to develop resistance 
against extended-spectrum cephalosporin, cefixime, and ceftriax-
one [8-11]. Cefixime is also no longer recommended as a first-line 
regimen [1]. 

Traditional drug development campaigns typically produce and 
test a few thousand compounds yearly, whereas computational 
technologies can accurately evaluate billions of molecules per week 
[12]. Thus, ever-growing efforts in the current biomedical arena 
utilize computational-aided drug design or in silico analysis to ac-
celerate drug design and development [8]. Many studies have suc-
cessfully identified potential drug targets and vaccine candidates 
using in silico methods [9-11,13-17]. 

Recent research employing a subtractive genomics strategy for 
many pathogenic strains has reported the successful identification 
and discovery of novel species-specific treatment targets. Subtrac-
tive genomics is defined as the method of removing host homolo-
gous proteins from the proteomes of the host and pathogen 
[18,19]. The technique is utilized to analyze the entire proteomes 
of the host and pathogen to identify proteins with unique thera-
peutic properties that are present only in the genome of the patho-
gen. In this study, a subtractive genomic approach was applied to 
identify potential drug candidates in the core proteome of N. gon-
orrhoeae (12 strains). 

Methods 

Retrieval of the core proteome from the EDGAR 3.0 database 
The core proteome of N. gonorrhoeae (12 strains) was retrieved via 
EDGAR 3.0 database [20]. The list of 12 N. gonorrhoeae strains 
analyzed in this study is MS11 NC 022240, NCCP11945 NC 
011035, FDAARGOS 205 NZ CP020418, FA 1090 NC 002946, 
32867 NZ CP016015, 34530 NZ CP016016, 34769 NZ 
CP016017, 35 02 NZ CP012028, FA19 NZ CP012026, FA6140 
NZ CP012027, FDAARGOS 204 NZ CP020415, and FDAAR-
GOS207NZCP020419. The reference strain, Neisseria_gonorrhoe-
ae_MS11_NC_022240, and the core proteome that showed hits 
against the reference strain were further investigated to predict 
new potential drug targets for N. gonorrhoeae. 

Identification of non-paralogous protein sequences 
CD-HIT tools filter the paralogous sequences of the bacterial pro-
teins [21]. The algorithm parameters are set to a sequence identity 
cutoff of 0.6 (60%), a bandwidth alignment of 20 amino acids, and 
the exclusion of sequences <100 amino acids in length, as proteins 
that have <100 amino acids could not be interpreted as essential to 
the pathogen’s survival. The threshold to remove genes with 60% 
similarity is considered to eliminate paralogues; therefore, any pro-
tein identified above the value was excluded.  

Identification of proteins containing essential genes  
The Database of Essential Genes (DEG) consists of an extensive 
list of all organisms' essential genes, including N. gonorrhoeae [22]. 
To identify essential genes that are indispensable for the survival of 
the bacteria, the identified proteins were subjected to BLASTp 
against the deposit data of DEG. The E-value was set to <0.0001 
[13,23]. 

Identification of proteins containing virulence factors 
Virulence factors (VFs) serve as a crucial determinant influencing 
pathogenicity. The Virulence Factor Database (VFDB) contains 
VFs from 25 important bacterial pathogens and is used to identify 
virulent proteins [24]. The proteins were subjected to BLASTp 
against the core dataset of VFDB. The E-value was set to <0.0001 
with an alignment cutoff value of 1%. 

Identification of protein sequences non-homologous to the 
human proteome 
To identify non-homologous proteins of pathogens relative to the 
human host, a BLASTp search was applied to align the identified 
virulent proteins that were non-homologous to the human pro-
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teome. This step is crucial to prevent unintentional binding with 
proteins crucial to the host. The proteins identified were subjected 
to BLASTp against the human proteome (Homo sapiens; 9606; 
UP000005640) downloaded from UniProt [25]. The E-value was 
set to >0.005, and the sequence identity to <50% [26]. Non-ho-
mologous proteins were defined as those that demonstrated "hits" 
at or above the thresholds, as has been described elsewhere [27-
29]. 

Identification of protein sequences non-homologous to 
human gut microbiota 
The protein sequences were then subjected to BLASTp against 
human (Homo sapiens; 9606) gut microbiota proteins with an 
E-value of > 0.005 to identify proteins that shared a high degree of 
similarity with the human gut bacteria. Proteins that shared high 
similarity were excluded. The cutoff values were set to default 
based on the parameters described above in section “Identification 
of protein sequences non-homologous to the human proteome.” 

Identification of anti-target proteins 
Drugs are designed to bind to and inhibit the proteins of patho-
gens. However, these compounds might unintentionally bind to 
proteins crucial to the host proteins' bio-cellular processes, leading 
to unintended pharmacokinetic effects. Such proteins are termed 
anti-targets. Anti-targets in humans include the ether-a-go-go-re-
lated gene (hERG), the pregnane X receptor, the constitutive an-
drostane receptor, and P-glycoprotein [30]. The identified pro-
teins were subjected to BLASTp against human anti-target pro-
teins from the NCBI database with an E-value > 0.005, and a simi-
larity threshold of <50% was used to screen anti-target proteins. 
Proteins that showed similarity values <50% were included [8]. 

Broad-spectrum analysis 
A broad-spectrum analysis identifies homologous proteins in mul-
tiple bacterial pathogens [9]. To identify broad-spectrum proteins, 
non-homologous proteins were aligned with BLASTp against a 
wide range of pathogenic organisms retrieved from the EMBL-Eu-
ropean Bioinformatics Institute (EBI) database [31]. The E-value 
was set to <0.0001. 

Host-pathogen interactions 
The non-homologous proteins were computed with BLASTp 
against databases Host-Pathogen Interaction Database (HPIDB 
version 3.0), Pathogen Host Interactions (PHI-base version 4.2), 
Pathogen-Host Interaction Search Tool (PHISTO version 2) of 
proteins that exhibit host-pathogen interactions. Host-pathogen 

interaction analysis is essential for identifying pathogenic proteins 
that show interactions with the human host. The E-value was set 
to <0.0001 and an alignment cutoff of 1% was used [32-34]. 

Analysis of unique metabolic pathways of N. gonorrhoeae 
Metabolic pathway analyses of N. gonorrhoeae were performed us-
ing the Kyoto Encyclopedia of Genes and Genomes (KEGG) da-
tabase [35]. The listed host (Homo sapiens) metabolic pathways 
were compared against the pathogen to identify unique pathways 
present only in the pathogen. The query proteins were then func-
tionally annotated by BLASTp in the KEGG Automation Annota-
tion Server (KAAS) against the KEGG database. The KEGG or-
thologs (KOs) of the identified metabolic proteins were assigned 
by the bi-directional best hit method in KAAS [36]. Proteins in-
volved in unique metabolic pathways of the pathogen were further 
analyzed. 

Sub-cellular localization 
The subcellular localization was identified using PsortB 3.0 [37]. 
Proteins localized in the cytoplasm are viable drug targets, while 
membrane proteins are often targeted as vaccine candidates [12]. 
Membrane proteins are likely to secrete antigenic proteins that the 
immune system can detect, which is why they are preferred as po-
tential vaccine candidates [38]. 

Druggability analysis of the identified non-homologous 
protein sequence of N. gonorrhoeae 
A protein must be druggable to be classified as a potential drug tar-
get. DrugBank provides comprehensive drug information com-
prising molecular information on thousands of Food and Drug 
Administration–approved drugs, nutraceutical drugs, and experi-
mental drugs [39]. To perform the analysis, the proteins were 
screened by performing BLASTp with an E-value < 0.0001. Pro-
teins that showed significance against the core dataset of the Drug 
Bank database were identified as druggable targets. 

To further screen ideal drug target candidates for N. gonorrhoeae, 
the proteins were further filtered based on the 10 rules of drugga-
ble proteins that are desirable to human targets [40,41]. The 10 
drug target properties are: molecular weight < 100 kDa, hydro-
phobicity between –0.150 and –0.350, length between 400 and 
600 amino acids, the signal motif is present, no PEST motif, more 
than 2 N-glycosylated amino acids, not more than one O-glyco-
sylated serine, a mean pI of <7.2, presence of a transmembrane he-
lix, and a cytoplasmic membrane location [40]. The physicochem-
ical parameters were predicted using ProtParam tools in the Ex-
Passy server to calculate amino acid length, hydrophobicity, and 
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theoretical pI [42]. To annotate signal peptides, the SignalIP pro-
gram was used (http://www.cbs.dtu.dk/services/SignalP/) [43]. 
The presence of a transmembrane helix (THMM) was analyzed 
by performing the TMHMM method (http://www.cbs.dtu.
dk/~Krogh/TMHMM/) [44]. PEST regions were identified as a 
sequence of amino acids containing more than 12 P, E, S, or T resi-
dues. These regions were identified by using (http://emboss.cbr.
nrc.ca/cgi-bin/emboss/epestfind). The NetOglyc program was 
used to analyze O-glycosylation (https://services.healthtech.dtu.
dk/service.php?NetOGlyc-4.0), and a similar program was used 
to identify N-glycosylation (https://services.healthtech.dtu.dk/
service.php?NetNGlyc-1.0) [45]. Proteins with relatively high tar-
get-like properties were selected for druggability analysis. 

Functional annotation of protein sequences 
Functional annotation was performed using UniProt, Gene Ontol-
ogy (GO), Pfam, and PROSITE. The UniProt knowledgebase 
contains many protein sequences and comprehensive annotations 
[25,46-48]. The GO project (http://www.geneontology.org/) 
generates structured, regulated vocabularies and categories for an-
notating genes, gene products, and sequences [46,49]. Pfam 
(http://pfam.xfam.org/) provides information on protein families. 
The domain database is frequently used to analyze novel genomes 
and metagenomes and drive experimental work on specific pro-
teins and systems, with a collection of 12,000 families that experi-
mental and computational biologists use extensively throughout 
the biological sciences [50]. PROSITE (http://prosite.expasy.
org/) is a collection of documentation entries that describe pro-
tein domains, families, and functional sites and the patterns and 
profiles used to identify them [51]. Two signatures are used to 
identify these regions: generalized profiles (weight matrices) and 
modular protein domains (regular expressions). Regular expres-
sions denote short sequence motifs that frequently correspond to 
functional or structurally significant residues [48].  

Homology modeling and protein evaluation 
Identified proteins were homology-modeled to obtain the 3D 
structures using the SWISS-MODEL server (swissmodel.expasy.
org) [52]. The homology model was built through a hidden Mar-
kov model based on the aligned target and template in the 
SWISS-MODEL Template Library. The proteins that were 
3D-modeled using SWISS-MODEL were evaluated using Py-
MOL [53]. 

Validation of protein structure 
The PROCHECK suite of tools checks the stereochemistry of a 

protein structure in detail. It produces several charts in PostScript 
format and a detailed residue-by-residue list. These measure the 
structure's quality compared to similarly refined structures of the 
exact resolution [54]. The modeled 3D-structured proteins, with 
stereochemical and structural information, were evaluated using 
PROCHECK. Protein Structure Analysis (ProSA) is a popular 
tool for checking 3D models of protein structures for mistakes. 
The homology-modeled protein sequence structure was accessed 
using the ProSA server based on the calculated Z-score [55]. 

Results and Discussion 

In this study, we explored potential drug target candidates for the 
core proteome of N. gonorrhoeae. We employed a subtractive ge-
nomics approach to screen potential drug targets [7,9,56]. The 
schematic workflow and analysis summarization can be referred to 
in Table 1 and Fig. 1. 

Subtractive genomic analysis 
The core proteome refers to proteins shared in all strains that are 
consistently used in various circumstances [57]. Therefore, the 
core proteome would be beneficial to reveal broad-spectrum can-
didates of this pathogen. To identify shared and unique features of 
the protein, we downloaded a total of 84,460 protein sequences 
inclusive of all Neisseria species from the EDGAR 3.0 database, 
from which we selected the core proteome sequences of 12 strains 
of N. gonorrhoeae, containing 12,300 sequences. 

All core proteome sequences of Neisseria species were submitted 
to CD-HIT to remove paralogous sequences. The removal of pa-

Table 1. Summary of the analysis of identified proteins

Analysis Identified proteins
Core proteome of 12 strains of Neisseria gonorrhoeae 12,300
Removal of non-paralogous proteins 944
Removal of proteins with <100 amino acids 476
Essentiality analysis 421
Virulent protein identification 120
Non-homology against the human proteome 101
Non-homology against gut microbiota 42
Broad spectrum analysis 42
Anti-target analysis 41
Host-pathogen interactions 27
KEGG metabolic pathway analysis 3
Subcellular localization 3
Druggability analysis 1

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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ralogous sequences is one of the first steps in the subtractive ge-
nomics approach. Paralogous genes are found in a single organism 
correlated by a gene duplication event [58]. When compared to 
other organisms, identifying loci and real single-nucleotide poly-
morphisms from short sequences, especially bacteria, remains dif-
ficult for species with duplicated genomes, as duplicated sequenc-
es might be incorrectly grouped into a single locus, making valid 
allelic variation identification difficult [59]. Assembly approaches 
that use sequence similarity thresholds to identify homology may 
overlap the paralogous genes. 

The overlapping of paralogues increases sequence variation at 
those loci, which may or may not affect species relationships [60-
62]. Still, it is predicted to result in underestimated branch lengths. 
Moreover, various studies have proved that proteins possessing a 
sequence identity greater than 60% are paralogous to each other. 
Thus, paralogues that shared >60% identity were excluded from 
this analysis. Based on the report, 944 proteins were identified as 
non-paralogous. Furthermore, proteins containing <100 amino 

acids were excluded, as these proteins are unlikely to carry essen-
tial genes for the survival of bacterial pathogens [14]. Out of the 
944 initial proteins, only 476 proteins of N. gonorrhoeae species 
were included for further analysis. 

Essential genes are indispensable for carrying out a bacterial 
pathogen's cellular processes. The essential genes are preferably 
developed as potential drugs, as antibacterial compounds are gen-
erally designed to target and inhibit these essential genes [8]. Tar-
geting these proteins could disrupt the bacteria's protein function-
ality, which would be beneficial for drug discovery. Based on the 
analysis, 421 proteins showed significant hits against a deposited 
dataset of bacteria containing essential genes in DEG. 

Exploring VFs and identifying novel VFs of N. gonorrhoeae is a 
significant contribution, as VFs play a vital role in the modulation 
or degradation of the host defense mechanism [63]. The VFDB 
server reported 120 proteins as virulent proteins. The identified 
VFs can be further explored as important targets to inhibit the 
pathogenicity of N. gonorrhoeae. 

Fig. 1. Schematic workflow of the identification of potential drug targets among the core proteome of all 12 Neisseria gonorrhoeae strains. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; KASS, KEGG Automatic Annotation Server.
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Based on the screening of non-homologous proteins, 101 pro-
teins showed no hits against the human proteome. The exclusion 
of homologous proteins from the human proteome is crucial in 
subtractive genomics analysis, as these can result in adverse phar-
macokinetics through cross-reactivity [64]. 

Antibiotic interactions depend on the gut microbiota's ecologi-
cal system [65]. Proteins that share similarities with the human 
gut microbiota will interrupt the typical flora environments of the 
gut during drug interactions. The analysis of non-homologous 
proteins against human gut microbiota resulted in 95 proteins hav-
ing a percentage identity of <50%. These proteins were identified 
as non-homologous and were further explored, as they are unlikely 
to contribute to cross-reactivity during drug interactions. 

Numerous drug candidates have been pulled from the market 
due to carcinogenicity; thus, cross-reactivity and carcinogenicity 
testing is critical for building an effective pharmacological mole-
cule [10]. Although non-homologous host proteins for this patho-
gen were deleted from the non-paralogous sequences, anti-target 
analysis was conducted to avoid harmful effects caused by inadver-
tent binding of medications administered to treat the pathogen to 
host anti-targets. The anti-target analysis identified 41 targeted 
proteins. 

An ideal potential drug candidate can be utilized for multiple in-
fections in a future setting. A protein is considered as a potential 
target for broad-spectrum drugs if a non-homologous protein is 
present in more than 25 bacterial pathogens [66]. All 41 proteins 
screened were identified as broad-spectrum through the 
broad-spectrum analysis. 

Host-pathogen interactions and metabolic pathway analysis 
A metabolic pathway is a series of processes or relationships 
among genes and their metabolites that result in the synthesis or 
modification of a system component required for the proper func-
tioning of a biological system [67]. Based on the targeted query 
proteins, 27 proteins were identified to have unique host-pathogen 
interactions. Therefore, these proteins were analyzed to elucidate 
the metabolic pathways involved. The KAAS server of KEGG pro-
vides molecular network information on targeted molecules [68]. 
The server is used to characterize and identify unique metabolic 

pathways through a comparison between N. gonorrhoeae and hu-
man pathways [69]. The comparative analysis of the metabolic 
pathways between humans and N. gonorrhoeae identified 14 dis-
tinct pathogen-specific metabolic pathways. Based on this analysis, 
three of the 27 proteins were identified as KEGG orthologous and 
involved in three unique pathways of N. gonorrhoeae, which can be 
employed as new treatment targets (Table 2). The analysis revealed 
27 human metabolic pathways, 36 N. gonorrhoeae pathways, and 14 
unique-pathogen-specific pathways (Supplementary Table 1).  

The pathways were assigned KO identifiers, where each KO as-
signment provides molecular functions (MFs) in the KO (KEGG 
Orthology). The three essential proteins were found to be engaged 
in the following metabolic pathways: O-antigen nucleotide sugar 
biosynthesis (KO: K00523), lipopolysaccharide (LPS) biosynthe-
sis (KO: K02535), and nicotinate and nicotinamide metabolism 
(KO: K08324). The results of this analysis included both biosyn-
thesis and metabolism pathways.  

Metabolism pathways involve metabolic interactions in which a 
molecule is changed to another chemical through a sequence of 
processes aided by specific enzymes. Biosynthetic metabolism, 
sometimes referred to as anabolism, is the process by which mac-
romolecules are synthesized from specified building blocks and 
these processes are mostly multi-enzymatic in nature [70]. 

LPS is one of the key ingredients of Gram-negative bacteria's 
outer cell walls, and it plays a crucial role in the pathogen's survival. 
The enzyme UDP-3O-[3-hydroxymyristoyl] N-acetylglucos-
amine deacetylase [EC:3.5.1.108] (LPxC) catalyzes the second 
step in the production of lipid A, which forms LPS structures [71]. 
It is a unique amphiphilic molecule found in the outer membranes 
of practically all Gram-negative bacteria. LpxC inhibitors may be 
used as antibiotics. 

O-antigen is located on the outer membrane of Gram-negative 
bacteria and is composed of repeat-unit polysaccharides. It is the 
immunodominant component of LPS and is the easiest target for 
the host's humoral response [72]. It functions as a bacteriophage 
receptor and is a dependable indicator of potential virulence [73]. 
O-antigen modification can overcome the host's defense mecha-
nisms and influence the stages of the infection [72]. Nucleotide 
sugar biosynthesis is the first of three gene cluster groups on the 

Table 2. Proteins involved only in unique pathogen-specific pathways

SNO KO assignment Protein ID Pathway Enzyme name
1 K00523 NGFG_RS03485 O-Antigen nucleotide sugar biosynthesis CDP-4-dehydro-6-deoxyglucose reductase, E3 [EC:1.17.1.1]
2 K02535 NGFG_RS11485 Lipopolysaccharide biosynthesis UDP-3O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase 

[EC:3.5.1.108]
3 K08324 NGFG_RS03515 Nicotinate and nicotinamide metabolism Succinate-semialdehyde dehydrogenase [EC:1.2.1.16 1.2.1.24]
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O-antigen chromosome [73]. CDP-4-dehydro-6-deoxyglucose 
reductase, E3 [EC:1.17.1.1], is a critical biosynthetic precursor for 
structural variation in O antigen [74]. Furthermore, O-antigen 
was predicted to be a virulent protein (NGFG RS03485). 

Nicotinate (niacin) and nicotinamide are coenzymes that are 
precursors to nicotinamide adenine dinucleotide (NAD+) and 
nicotinamide-adenine dinucleotide phosphate (NADP+) [75]. 
NAD is a cofactor that is required by all living organisms. Each 
bacterial species has its mechanism for reducing NAD+ to NADH, 
such as respiration, glycolysis, the tricarboxylic acid cycle, or fer-
mentation [76]. The enzyme succinate semialdehyde dehydroge-
nase [EC:1.2.1.16] catalyzes the reduction of NAD+ to NADH 
and produces a succinate substrate for the tricarboxylic acid cycle. 
It is similar to succinate-semialdehyde dehydrogenase [EC 
1.2.1.24]. 

Inhibiting these enzymes identified in the metabolic pathways 
may disrupt critical processes for N. gonorrhoeae survival and viru-
lence, and thus may be a viable antibacterial therapy method. Giv-
en that each antibiotic has a limited duration of action, and resis-
tance will eventually develop, mainly if the same enzymes are re-
peatedly targeted, it is critical to create new classes of inhibitors 
that target previously untargeted cellular enzymes to maintain 
control of infectious diseases. 

Identification of druggable proteins of N. gonorrhoeae 
Druggable proteins are characterized as binding with small mole-
cules, thereby inhibiting protein functions [18]. Criteria for distin-
guishing between a suitable drug candidate and a vaccine candi-
date are based on the protein's subcellular localization, druggabili-
ty, and physicochemical properties. Subcellular localization is a 
critical aspect of therapeutic targets that helps understand the pro-
tein functionality, as many proteins exist in several locations. The 
localization of the three proteins involved in the pathogen-specific 
pathways was analyzed and achieved using PsortB v.3.0. 

Based on the analysis performed, all three proteins were present 
in the cytoplasm, which signifies that the proteins are potential 
drug target candidates. Cytoplasmic proteins are often considered 

potential drug targets for developing small-molecule drugs. The 
analysis using the DrugBank database showed that these cytoplas-
mic proteins were all druggable. The drug name, drug bank ID, 
and E-value score are detailed in Supplementary Table 2.  

The physicochemical properties of a drug play a significant role 
in drug development and serve as a critical criterion of drug candi-
dates. Most therapeutic projects consistently use the following cri-
teria: molecular weight < 100 kDa, hydrophobicity between 
–0.150 and –0.350, length between 400 and 600 amino acids, the 
signal motif is present, more than one N-glycosylated amino acids, 
not more than one O-glycosylated serine, a mean pI of <7.2, the 
presence of a transmembrane helix, and a cytoplasmic membrane 
location. Although these criteria are generally used for potential 
drug targets, they are not absolute requirements.  

Ideal drug target candidates should have low molecular weight, 
increasing the drug molecules' absorption rate. The isoelectric 
point (i.e., the mean pI) indicates whether amino acids are acidic 
or basic. Proteins should be acidic based on the drug target criteria, 
as antibiotics interact differently based on the acidity level. Based 
on the analysis using standard criteria for suitable drug targets, the 
proteins identified included NGFG RS03485. The proteins were 
found to have relatively high drug target properties, as shown by a 
molecular weight < 100 kDa, mean pI < 7.2, hydrophobicity be-
tween –0.150 and –0.350, length between 400 and 600 amino ac-
ids, at least one O-glycosylation, and more than two N-glycosylat-
ed amino acids (Table 3). 

Functional annotation characterization of identified proteins 
To better understand protein functionality, we performed function-
al annotations and GO characterization by identifying proteins 
against the core dataset of the GO and Uniprot databases. The 
functional annotation of proteins provides a molecular understand-
ing that will benefit the drug development process and provide po-
tential antibacterial targets. The analysis showed that the protein 
NGFG RS0385 harbors the cluster 2Fe-2S iron-sulfur cluster bind-
ing domain-containing protein (Supplementary Table 3). 

The GO analysis identified three primary MFs of NGFG 

Table 3. Assessment of the drug target properties of the identified proteins

Protein ID MW <  100 
kDa Mean pI <7.2

Hydrophobicity 
(GRAVY)–0.150 

to –0.350

Length 400-
600 (amino 

acids)

Signal peptide 
present likeli-
hood >  0.5

TMMH >  1 O-glycosyla-
tion ≤  1

N-glycosyla-
tion >  2

Aliphatic
Index

NGFG_RS03485 36.6 6.21 –0.288 336 0.1126 0 1 3 82.56
NGFG_RS11485 33.9 5.21 –0.086 307 0.1358 0 0 2 98.18
NGFG_RS03515 49.3 6.3 –0.12 447 0.0049 0 2 3 84.14

MW, molecular weight; GRAVY, grand average hydrophobicity; TMMH, transmembrane helix.
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RS03845: electron transfer activity, metal ion binding, and iron-
two-sulfur cluster binding (2Fe-2S). The MFs indicate behaviors 
rather than the entities (molecules or complexes) that conduct the 
actions and do not describe where, when, or in what context the 
activity occurs [49]. 

Proteins that engage in the 2Fe-2S function, also known as ferre-
doxins, are iron-sulfur proteins that enable the biological genera-
tion or usage of hydrogen gas by bacteria by acting as an elec-
tron-mediating catalyst [77]. This iron protein was initially isolat-
ed from the saccharolytic anaerobe Clostridium pasteurianum. Its 
structure was characterized by automated Edman degradation of 
the entire protein and peptides derived from tryptic and staphylo-
coccal protease digestion [78]. An essential ancestor of all iron-sul-
fur proteins, ferredoxins are found mostly in anaerobic bacteria 
such as Escherichia coli and have a low molecular weight (6,000 
Da) and two (4Fe-4S) clusters, which indicate that they evolved in 
the absence of oxygen [79]. Iron-sulfur cluster proteins play a sig-
nificant role in bacterial pathogenesis, acting as an inherent VF 
[80]. 

Numerous transcriptional regulators in bacteria, including many 
mammalian pathogens, require iron-sulfur clusters as essential co-
factors. Clusters are sensitive to iron availability, oxygen tension, 
and oxygen and reactive nitrogen species. They allow bacteria to 
swiftly change their gene expression profiles in response to chang-
ing environmental conditions [80]. The 2Fe-2s cluster comprises 
two iron atoms and two inorganic sulfur atoms as bridge ligands 
[81]. 

Several studies have shown that redox metabolism is viable 
when designing anti-infectious medications, and iron-sulfur pro-
teins have been specifically implicated as a promising target [82]. 
The role of Fe-S cluster repair in the survival of Yersinia pseudotu-
berculosis in the spleen, as determined by a previous study, suggests 
that extracellular bacteria may rely on this pathway for survival 
within host tissues [83]. Another study found that iron-sulfur clus-
ters were identified from N. meningitidis, which had structural ho-
mologies with Vibrio cholera toxin and enterotoxin from E. coli. 
The observation led to the inhibition of the iron-sulfur cluster, 
causing a loss of ASP-ribosyltransferase enzymatic activity [84].  

Moreover, to colonize host tissues successfully, bacteria must re-
spond to and detoxify numerous host-derived antimicrobial chem-
icals, such as nitric oxide (NO). NO has direct antibacterial activi-
ty by targeting proteins containing iron-sulfur clusters [83]. This 
finding suggests that the iron-sulfur cluster binding domain-con-
taining identified in this study can be further explored as a promis-
ing drug target for N. gonorrhoeae.  

An electron transport chain (ETC) is an electron carrier se-

quence that moves electrons from donors to terminal electron ac-
ceptors. As N. gonorrhoeae is an obligate human pathogen, the 
pathogen can receive electrons from oxygen and nitrate, yet its 
ETC has not been extensively explored. One study comprehen-
sively determined these redox proteins' functions [84]. Ideally, 
more studies should explore the ETC as the antibacterial target for 
N. gonorrhoeae. 

Metal-binding proteins chelate metal ions [85]. The chelation 
of metal ions commonly involves histidine or cysteine. In some 
circumstances, this is required for folding and tertiary structure 
maintenance, which signifies the survival of the bacterial pathogen. 
One of the genes identified as metal binding-specific is the 
mntABC transporter identified in N. gonorrhoeae. This finding re-
veals that the growth of N. gonorrhoeae could be driven by either 
manganese or zinc ions, indicating that the mntABC system could 
transport both ions and significantly affect pathogen survival [86]. 
Inhibiting the metal-binding proteins could disrupt the growth of 
N. gonorrhoeae. 

An exotoxin is a bacterial toxin that can harm the host by killing 
cells or interrupting normal metabolism. A bacterial exotoxin, also 
known as a bacterial ADP-ribosylating exotoxin, acts by depositing 
the ADP-ribose moiety of NAD onto eukaryotic target proteins 
[87]. Protein toxins are the predominant virulence agents of many 
bacterial species, making them potential therapeutic targets. A ma-
jor problem in the 21st century is the emergence of resistant 
strains of bacteria. However, these treatments put less selection di-
vergence on bacteria and are less likely to cause resistance [88]. 
Secondly, even after the bacteria have been eliminated from the 
host, symptoms may persist if the toxin remains there [89]. Third-
ly, non-antibiotic treatments avoid the disruption of normal mi-
crobiota sometimes associated with antibiotic treatments [90]. 

In contrast, methionine N-acyltransferase acts as a catalyst in the 
acetylation of L-methionine to N-acetyl-L-methionine. The 
N-acetyl-L-methionine present in bacteria acts as a translation ini-
tiator [91]. The consistent findings in our study suggest that this 
may be a novel antibacterial target. 

Homology modeling and validation of 3D protein structure 
Homology modeling was performed for the shortlisted proteins 
were modeled to obtain a 3D structure. The homology modeling of 
the 3D structure of the proteins was performed using SWISS- 
MODEL (Fig. 2). Ramachandran plots, ERRAT, and ProSA were 
used to assess further the three sets of genes consistently utilized 
across many conditions of protein structure. Ramachandran plots 
provide an assessment of favorable regions. These plots thoroughly 
explore potential ψ and Ψ and combinations of steric conflicts be-
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Fig. 2. (A) 3D-modeled structure of NGFG RS03485 evaluated using PyMOL. Red: α-helices, yellow: β-sheets, and green: loops. (B) 
Ramachandran plot analysis of the 3D-modeled structure of NGFG RS03485 indicated that 85.9% of the protein conformation was within 
the favored region. (C) ProSA analysis of the 3D-modeled structure of NGFG RS03485 indicated no significant deviation from typical native 
structures. The results generated display the Z-scores, which indicate the overall model quality, and energy plots, which indicate the local 
model quality. ProSA-web Z-scores of all protein chains in PDB are determined by X-ray crystallography (light blue) and nuclear magnetic 
resonance spectroscopy (dark blue) with respect to their length. The Z-scores of protein models were present in the range represented by the 
large black dot.
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tween atoms using computer models of various dipeptides [92]. 
Based on the Ramachandran plot analysis, the protein's main chain 
conformation was more than 85% within the favored regions. The 
Z-score was used to assess the models' sequence-structure compat-
ibility via ProSA [55]. Based on the Z-score predicted in ProSA, all 
the proteins’ 3D models were positioned inside the structural space 
of proteins as determined by X-ray crystallography. The ProSA 
analysis of the 3D-modeled structure of NGFG RS03485 indicated 
no significant deviation from typical native structures. 

In the current study, computational biology was used to uncover 
novel therapeutic target candidates in the core proteome of 12 
strains of N. gonorrhoeae by analyzing their protein sequences. Out 
of 12,300 core proteomes, one essential core protein with unique 
metabolic pathogen pathways was identified as a possible thera-
peutic target. Using computational databases and a subtractive ge-
nomics technique, we revealed the hitherto untapped potential of 
current computational databases and identified essential genes 
that may be evaluated as candidates for antibacterial drug discov-
ery. Presumably, the prospective pharmacological targets identified 
from the N. gonorrhoeae core proteome will expedite the discovery 
of innovative anti-gonococcal medicines. The functional annota-
tion of the proteins identified in this study provides a molecular 
understanding that will benefit the drug development process and 
potentially unravel a novel antibacterial target. 
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